ABSTRACT: Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers [X_laevis_2]
Project description:Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers [Xenopus_laevis]
Project description:Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network. Transcriptomes of animal caps overexpressing Pax3+/-Zic1 in the presence/absence of cycloheximide, a translation inhibitor, were compared to control animal caps to identify direct Pax3 and Zic1 targets 2-4 cells stage embryos were injected with inducible Pax3-GR+/-Zic1-GR constructs. Animal caps were cut at stage 9. Cycloheximide (Chx, 0.1mg/ml) was then applied to the healed animal caps, from stage 10 to 10.5 (i.e. for 30 min at 23*C), then dexamethasone (Dex) was added at stage 10.5 to the cycloheximide-containing medium. Explants were rinced and lysed after two additional hours at 23*C, i.e. when sibling embryos reached stage 11.5-12. Total RNA was then extracted and hybridized on Affymetrix microarrays. Transcriptomes were compared to determine Pax3 and Zic1 targets.
Project description:Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network. Transcriptomes of animal caps overexpressing Pax3+/-Zic1 in the presence/absence of cycloheximide, a translation inhibitor, were compared to control animal caps to identify direct Pax3 and Zic1 targets
Project description:Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network. The transcriptomes of neural border samples (stage 14 and 18) were compared to the transcriptome of anterior neural fold (stage 18), early neural plate (stage 12), and animal cap explants (stage14) to identify genes expressed specifically in neural border samples. Tissue samples from Xenopus laevis embryos were dissected, then total RNA was extracted and hybridized on Affymetrix microarrays. Selected tissue samples encompass the neural crest at different stages of its induction (early neural plate at stage 12, neural border at stage 14, neural border at stage 18), as well as reference tissues (anterior neural fold at stage 18, a tissue that belongs to the neural border but does not produce neural crest, and animal cap grown until stage 14 that differentiates into epidermis).
Project description:Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network. The transcriptomes of neural border samples (stage 14 and 18) were compared to the transcriptome of anterior neural fold (stage 18), early neural plate (stage 12), and animal cap explants (stage14) to identify genes expressed specifically in neural border samples.
Project description:Targets of Pax3 and Zic1 in neural crest and cranial placode progenitors
| PRJNA283107 | ENA
Project description:Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers
Project description:During embryonic development, the neural crest is a transient, migratory cell population that differentiates into a large variety of tissues and contributes much to the formation of vertebrate body. In Xenopus, lrig3 is involved in neural crest formation by modulating FGF and Wnt signaling. Lrig3 functions downstream of pax3 and zic1 to regulate the expression of neural crest markers. We used microarrays to identify the lrig3 target genes during neural crest formation.
Project description:The transcription factors Pax3 and Zic1 are among the earliest genes activated at the neural plate border. Pax3 and Zic1 in combination promote neural crest fate, while Zic1 alone regulate cranial placode progenitor formation. We used microarrays to identify the global repertoire of genes activated by these facors individually or in combination to gain insights into the molecular mechanisms underlying cell fate decision at the neural plate border. Xenopus laevis embryos were injected at the 2-cell stage with mRNA encoding Pax3GR and Zic1GR , the hormone-inducible version of Pax3 and Zic1, alone or in combination. At the blastula stage (stage 9), animal cap explants were dissected and cultured for 8 hours in the presence of dexamethasone. A glucocorticoid receptor (GR) mRNA was also injected as negative control.
Project description:The transcription factors Pax3 and Zic1 are among the earliest genes activated at the neural plate border. Pax3 and Zic1 in combination promote neural crest fate, while Zic1 alone regulate cranial placode progenitor formation. We used microarrays to identify the global repertoire of genes activated by these facors individually or in combination to gain insights into the molecular mechanisms underlying cell fate decision at the neural plate border.