Project description:The coding-complete genome sequences of an iteradensovirus (family Parvoviridae) and an alphapermutotetra-like virus (family Permutotetraviridae) were discovered from transcriptomic data sets obtained from Thaumetopoea pityocampa larvae collected in Portugal. Each of the coding-complete genome sequences of these viruses contains three main open reading frames (ORFs).
Project description:We present a de novo mitogenome assembly obtained from specimens sampled in the so-called summer population (SP) of Thaumetopoea pityocampa (Denis and Schiffermüller, 1775) in Portugal. Contrary to the typical larval development occurring in winter in this species, the larvae of this unique population develop during summer. The sequencing data used were obtained from genomic libraries originally generated to assemble the nuclear genome of T. pityocampa[1]. We also provide a complete annotation and a phylogenetic representation which positions the Portuguese summer population of T. pityocampa and an Italian typical individual of the same species among the Notodontidae family and more distant Noctuoidea species. This data represents a valuable new resource for an expanding and urticating insect pest.
Project description:Thaumetopoea pityocampa (pine processionary moth) is one of the most important pine pests in the forests of Mediterranean countries, Central Europe, the Middle East and North Africa. Apart from causing significant damage to pinewoods, T. pityocampa occurrence is also an issue for public and animal health, as it is responsible for dermatological reactions in humans and animals by contact with its irritating hairs. High throughput sequencing technologies have allowed the fast and cost-effective generation of genetic information of interest to understand different biological aspects of non-model organisms as well as the identification of potential pathogens. Using these technologies, we have obtained and characterized the transcriptome of T. pityocampa larvae collected in 12 different geographical locations in Turkey. cDNA libraries for Illumina sequencing were prepared from four larval tissues, head, gut, fat body and integument. By pooling the sequences from Illumina platform with those previously published using the Roche 454-FLX and Sanger methods we generated the largest reference transcriptome of T. pityocampa. In addition, this study has also allowed identification of possible viral pathogens with potential application in future biocontrol strategies.