Project description:The ESCRT machinery drives the multivesicular body (MVB) pathway in eukaryotic cells and thus is required for the degradation of ubiquitinated membrane proteins in lysosomes. To systematically characterize how cells respond to loss of ESCRT function, we used quantitative proteomics and gene expression profiling in yeast. We find that ESCRT mutants display severe defects in amino acid homeostasis, resulting in lower levels of free intracellular amino acids. This deficit renders the growth of ESCRT mutants highly sensitive to nutrient limitation. Further proteomic analysis revealed that the MVB pathway essentially contributes to proteome remodeling under nutrient limitation. The rapid decline of protein synthesis upon starvation no longer enables ESCRT mutants to complete their cell cycle and properly enter a quiescent state, which strongly affects their long-term survival. Thus, the MVB pathway functions to selectively down-regulate integral membrane proteins and, together with autophagy and proteasomal degradation, considerably contributes to amino acid recycling. We used microarrays to identify gene expression changes between delta VPS4 knock out and wild type Saccharomyces cerevisiae strains
Project description:Circadian clocks are evolved to adapt to the daily environment changes under different conditions. The ability to maintain circadian clock functions in response to various stress and perturbations is important for organismal fitness. Here, we show that the nutrient sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation in Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at the frq promoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of GCN2 signaling pathway in maintaining robust circadian clock function in response to amino acid starvation and the importance of histone acetylation at the frq locus in rhythmic gene expression.
Project description:tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and its distribution is nutrient-dependent. At least three members of M-NM-2-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates translation of particular transcripts We compared individual translation activity index (P/NP), obtained from the ratio of polysome-associated (P) to not associated (non-polysomal, NP) mRNAs, in the msn5M-NM-^T, mtr10M-NM-^T, and wild-type cells under fed or acute amino acid depletion conditions Polysome associated (P), not associated (non-polysomal, NP), and total (T) RNAs were isolated from yeast cells, including wild-type (BY4742), msn5 deletion, mtr10 deletion, grown in fed and 30-min amino acid starvation conditions
Project description:tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and its distribution is nutrient-dependent. At least three members of β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates translation of particular transcripts We compared individual translation activity index (P/NP), obtained from the ratio of polysome-associated (P) to not associated (non-polysomal, NP) mRNAs, in the msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions
Project description:The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation
Project description:Within the endolysosomal pathway in mammalian cells, ESCRT complexes facilitate degradation of membrane proteins from limiting membranes of late endosomes. Recent studies revealed that yeast ESCRT proteins also sort for degradation, ubiquitinated proteins from vacuolar membrane. However, whether mammalian ESCRTs perform similar function at lysosomes remained unknown. Here, we studied the involvement of mammalian ESCRT-I in maintaining lysosomal membrane homeostasis and its implication in lysosome-related signaling. We show that ESCRT-I restricts the size of lysosomes and promotes degradation of lysosomal Ca2+ channel, MCOLN1 protein. ESCRT-I depletion induced transcriptional response related to MiT-TFE signaling and cholesterol biosynthesis, pointing to lysosomal dysfunction. The lack of ESCRT-I promoted abnormal cholesterol accumulation on lysosomes and activated TFEB/TFE3 transcription factors in Ca2+-MCOLN1-dependent, but lipid-independent manner. Hence, our study provides evidence that ESCRT-I maintains lysosomal homeostasis and elucidates MiT-TFE regulatory mechanism activated in response to ESCRT-I deprivation
Project description:Its characteristic rose-like aroma makes phenylethanol a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbor an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source such as glucose provides an economically attractive alternative for phenylalanine bioconversion. In this study, a Synthetic Genetic Array screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to cause a transcriptional upregulation of ARO10 during growth with ammonium sulfate as the sole nitrogen source. Physiological characterization revealed that the aro8M-oM-^AM-^D mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8 mutation also stimulated phenylethanol production when combined with other, previously documented mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced over 3 mM of phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products. The goal of the present study was to identify genes that influence the transcriptional (de)repression of the Ehrlich pathway during growth with ammonium as the nitrogen source. With the aid of Synthetic Genetic Array technology, we constructed a strain collection in which deletions in the non-essential genes in the S. cerevisiae genome were combined with a reporter plasmid comprising the ARO10 promoter fused to a reporter gene (egfp) encoding a fluorescent reporter protein. After screening by flow cytometry, deletion of ARO8 led to a deregulated expression from the ARO10 promoter. The impact of this deletion was further studied by transcriptome and intracellular metabolite analyses. Furthermore, phenylethanol production was measured in strains that combined the aro8 mutation with mutations that were previously shown to deregulate aromatic amino acid biosynthesis.
Project description:The highly conserved protein eIF5A found in archaea and all eucaryotes uniquely contains the posttranslationally formed amino acid hypusine. Despite being essential the functions of this protein and its modification remain unclear. To gain more insight into these functions temperature sensitive mutants of the human EIF5A1 were characterized in the yeast Saccharomyces cerevisiae. EIF5A is proposed to be an RNA binding protein. Thus, we used microarrays to identify special RNA subsets of up- and downregulation that are influenced by a limited eIF5A function in strains expressing a point mutated form of eIF5A. Experiment Overall Design: Wild-type and mutant yeast strains were grown at 25°C following total RNA extraction and hybridization on Affymetrix microarrays. cRNA probes derived from RNA preparations were obtained from four isogenic, haploid strains from each of the wild-type and the mutant. This ensured that changes in the transcriptome could be attributed to the impaired HYP function of V81G rather than to differences in the genetic background. Therefore, two groups of 4 datasets (per wild-type W303-WT and mutant W303-V81G strains) were generated after hybridisation to the micro arrays.