Project description:We have mapped binding sites for the histone demethylase, Jmjd2c/Kdm4c/Gasc1, in mouse embryonic stem cells (ESCs). ChIP-seq was performed using an antibody recognizing Jmjd2c. Chromatin was obtained from conditional Jmjd2c knockout ESCs cultured in the absence or presence of OHT to induce activation of Cre recombinase and loss of Jmjd2c expression.
Project description:We have mapped binding sites for the histone demethylase, JMJD2C/KDM4C/GASC1, and the effect of JMJD2C depletion on H3K9me3 and H3K36me3 distributions in KYSE150 cells. The human esophageal carcinoma cell line, KYSE150, contains an amplification of the JMJD2C locus. ChIP-seq was performed using chromatin from control or JMJD2C-depleted KYSE150 cells and antibodies recognizing JMJD2C, H3K4me3, H3K9me3 or H3K36me3.
Project description:We have mapped binding sites for the histone demethylase, Jmjd2c/Kdm4c/Gasc1, in mouse embryonic fibroblasts (MEFs) and the impact of Jmjd2c depletion on H3K9me3 and H3K36me3 distributions.
Project description:We analyzed the genome-wide binding profile of Jarid1b in mouse ESCs. We find that Jarid1b localizes mainly to transcription start sites, of which more than 50% are also bound by Polycomb proteins and are enriched for genes encoding developmental regulators. Furthermore, we generated genome-wide mapping of H3K4me3 in LKO Scramble and LKO Jarid1b mouse ESCs. Virtually all Jarid1b binding sites are positive for H3K4me3. Upon knockdown of Jarid1b, H3K4me3 is significantly increased at Jarid1b positive regions. Examination of Jarid1b and H3K4me3 in mouse ES cells
Project description:We have mapped binding sites for the histone demethylase, JMJD2C/KDM4C/GASC1, and the effect of JMJD2C depletion on H3K9me3 and H3K36me3 distributions in KYSE150 cells. The human esophageal carcinoma cell line, KYSE150, contains an amplification of the JMJD2C locus.