Project description:The thermophilic fungus Chaetomium thermophilum has been successfully used in the past for biochemical and high resolution structural studies of protein complexes, but subsequent functional analysis of these assemblies were hindered due to the lack of genetic tools in this thermophile, which are typically amenable in several other mesophilic eukaryotic model organisms, in particular the yeast Saccharomycers cerevisiae. Hence, we aimed to develop a regulatable gene-expression system in C. thermophilum, which might facilitate such in vivo studies, based on what we know about the galactose-inducible GAL promoter in yeast. To identify sugar-regulatable promoters in C. thermophilum, we performed comparative xylose- versus glucose-dependent gene expression studies, which uncovered a number of enzymes induced by xylose but repressed by glucose. Subsequently, we cloned the promoters of the two most stringently regulated genes, the xylosidase-like gene (XYL) and xylitol dehydrogenase (XDH), obtained from this genome-wide analysis in front of the thermostable YFP (yellow fluorescent protein) reporter. In this way, we could demonstrate xylose-dependent YFP expression by either western blotting or life cell imaging fluorescence microscopy. Prompted by these results, we finally expressed a well-characterized dominant-negative ribosome assembly factor mutant, rsa4 E117>D, under the control of the XDH promoter, which allowed us to induce a nuclear export defect of the pre-60S subunit when C. thermophilum cells were grown in xylose but not glucose containing medium. Altogether, our study recognized xylose-regulatable promoters in Chaetomium thermophilum, which may foster functional studies of genes of interest in this thermophilic eukaryotic model organism.
Project description:Investigation of whole genome gene expression level changes in Lactococcus lactis KCTC 3769T,L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.