Project description:Comparative genomic analysis of T. cruzi CLB vs Trypanosoma rangeli (strains SC, Choachí, C23, H14, R1625 and PIT10) and Trypanosoma conorhini
Project description:A growing body of evidence in mammalian cells indicates that secreted vesicles can be used to mediate intercellular communication processes by transferring various bioactive molecules, including mRNAs and microRNAs. Based on these findings, we decided to analyze whether T. cruzi-derived extracellular vesicles contain RNA molecules and performed a deep sequencing and genome-wide analysis of a size-fractioned cDNA library (16M-bM-^@M-^S40 nt) from extracellular vesicles secreted by noninfective epimastigote and infective metacyclic trypomastigote forms. Our data show that the small RNAs contained in these extracellular vesicles originate from multiple sources, including tRNAs. In addition, our results reveal that the variety and expression of small RNAs are different between parasite stages, suggesting diverse functions. Taken together, these observations call attention to the potential regulatory functions that these RNAs might play once transferred between parasites and/or to mammalian host cells. Small RNAs profiles (16-40 nt) of epimastigote-derived extracellular vesicles, metacyclic trypomastigote-derived extracellular vesicles and metacyclic trypomastigote parental cells.
Project description:A growing body of evidence in mammalian cells indicates that secreted vesicles can be used to mediate intercellular communication processes by transferring various bioactive molecules, including mRNAs and microRNAs. Based on these findings, we decided to analyze whether T. cruzi-derived extracellular vesicles contain RNA molecules and performed a deep sequencing and genome-wide analysis of a size-fractioned cDNA library (16–40 nt) from extracellular vesicles secreted by noninfective epimastigote and infective metacyclic trypomastigote forms. Our data show that the small RNAs contained in these extracellular vesicles originate from multiple sources, including tRNAs. In addition, our results reveal that the variety and expression of small RNAs are different between parasite stages, suggesting diverse functions. Taken together, these observations call attention to the potential regulatory functions that these RNAs might play once transferred between parasites and/or to mammalian host cells.
Project description:Antibody recognition of Trypanosoma cruzi conserved proteins was assessed by evaluating pools of patient IgG samples on microarrays of 400,000 peptides covering these proteins as 15-mers with an overlap of 13 amino acids.