Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in primates.
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in colorectal cancer.
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in colorectal cancer.
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in human stem cells and during differentiation.
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in colorectal cancer. normal colon tissues, matched primary tumors, blood and colon derived cell lines
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in colorectal cancer. normal colon tissues, matched primary tumors, and colon derived cell lines
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in primates. 3 replicates of Gorilla gorilla, Pan troglodytes, Pongo pygmaeus and Homo sapiens were studied.
Project description:Chromosomal copy number variations (CNV) have been associated with various neurological and developmental disorders and chromosomal microarray (CMA) is a method of choice to diagnose Copy Number Gain/Loss syndromes. Recently, next-generation sequencing (NGS)-based low-coverage whole genome sequencing (LC-WGS) has been applied to detect Copy Number Gain/Loss syndromes. This dataset is intended to be used as a “Golden standard data set” for development of LC-WGS analysis method. It consists of patients (n=63) who have a mental delay and/or physical disability phenotype and normal (n=20) phenotype.