Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:In acute myeloid leukemia (AML), leukemia stem cells (LSC) play a central role in disease progression and recurrence due to their intrinsic capacity for self-renewal and chemotherapy resistance. Whereas epigenetic mechanisms balance normal blood stem cell self-renewal and fate decisions, mutation and dysregulation of epigenetic regulators are considered fundamental to leukemia initiation and progression. Alterations in miRNA function represent a non-canonical epigenetic mechanism influencing malignant hematopoiesis, however the function of miRNA in human LSC remains undetermined. Here we show that miRNA profiling of fractionated AML populations defines an LSC-specific signature that is highly prognostic for patient survival. Gain- and loss-of-function analyses demonstrated that miR-126 restrained cell cycle progression, prevented differentiation, and increased self-renewal of human LSC. By targeting the G0 to G1 gatekeeper CDK3, miR-126 preserved LSC quiescence and promoted chemotherapy resistance. Thus, in AML, miRNAs influence patient outcome through post-transcriptional regulation of stemness programs in LSC.
Project description:Both FGF and WNT pathways play important roles in embryonic development, stem cell self-renewal and are frequently deregulated in breast cancer. To study the cooperation between FGF and WNT signaling, we have generated a mouse model, MMTV-WNT1/MMTV-iFGFR1 (WNT/iR1), in which we could chemically overactivate iFGFR1 in a ligand-independent manner.
Project description:Human embryonic stem (hES) cells have unique features: self-renewal ability and pluripotency. They can be continuously cultured in undifferentiated state and give rise to cells and tissues of all three germ layers. Thus hES cells provide a resource not only for cell replacement therapy but also for studying human developmental biology. We aimed to identify the unique signature of miRNAs in human embryonic stem cells. Keywords: cell type comparison design
Project description:Chickarmane2006 - Stem cell switch reversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957907314
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
Project description:Chickarmane2006 - Stem cell switch irreversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957942740
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
Project description:Using global gene expression and proteomic analyses, we identified a molecular signature in human embryonic and induced pluripotent stem cells that suggested a central regulatory role for RNA splicing in self-renewal. Through genetic and biochemical approaches, we established reciprocal functional links between the master regulatory factor OCT4 and SFRS2, a member of the serine/arginine-rich family of splicing factors. SFRS2 regulates expression of two isoforms of the methyl-CpG-binding protein MBD2 that play opposing roles in human ESC and during the reprogramming of fibroblasts. Both the MBD2a isoform expressed in fibroblasts and the MBD2c isoform found in pluripotent cells bind OCT4 and NANOG promoters in human ESC, but only MBD2a interacts with NuRD chromatin remodeling factors. Members of the miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and the somatic specific MBD2a isoform. These data are consistent with a model in which OCT4, SFRS2, and MBD2 participate in a positive feedback loop to regulate proteome diversity in support of self-renewal in pluripotent cells. We isolated RNA from human iPS cells, different human fibroblasts and human embryonic stem cells for hybridization to the Affymetrix gene expression microarrays.