Project description:The Bmi1 Polycomb protein is involved in the epigenetic repressive control of self renewal and survival of cancer initiating cells. In Chronic Myeloid Leukemia (CML), bmi1 expression increases gradually as the disease progresses from a chronic latent phase to a deadly blast crisis. We developped an inducible shRNA system to silence Bmi1 in the human K562 chronic myeloid leukemia (CML) cell line in order to identify new Bmi1-target genes. Gene profiling was performed on inducible shBmi1-K562 cells incubated without (P3-K562+shBMI1) or with doxycycline for 96h (P4-K562+shBMI1+doxycycline) using HG-U133 Plus2 Affymetrix Arrays.
Project description:The Bmi1 Polycomb protein is involved in the epigenetic repressive control of self renewal and survival of cancer initiating cells. In Chronic Myeloid Leukemia (CML), bmi1 expression increases gradually as the disease progresses from a chronic latent phase to a deadly blast crisis. We developped an inducible shRNA system to silence Bmi1 in the human K562 chronic myeloid leukemia (CML) cell line in order to identify new Bmi1-target genes.
Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis
Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis Control RD-ES cells and HDGF-silenced RD-ES cells were profiled on 22K Human Genome Array
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Increased FTO expression has been connected to resistance to tyrosine kinase inhibitors in CML. To explore the therapeutic potential of targeting FTO in CML, we tested the FTO catalytic inhibitor in the K562 CML cell line. The RNA-seq was performed to identify relevant regulated genes.
Project description:In our previous study, the roles of heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) in CML cells were revealed. We found that overexpression of HNRPDL transformed murine BaF3 cells and induced lethal mice leukemia. Conversely, HNRPDL silencing inhibited colony-forming cell (CFC) production of CML CD34+ cells and attenuated BCR-ABL induced mice leukemia. In addition, HNRPDL modulated imatinib response of K562 cells and HNRPDL silencing sensitized CML CD34+ cells to imatinib treatment. To obtain molecular insights of how HNRPDL modulates the growth and imatinib response of human CML cells, we generated microarray data comparing HNRPDL silenced K562 cells with control (Scramble) cells.