Project description:Drug resistance in breast cancer is the major obstacle to a successful outcome following chemotherapy treatment. While upregulation of multidrug resistance (MDR) genes is a key component of drug resistance in multiple cancers, the complexity and hierarchy of non-MDR driven drug resistance pathways are still largely unknown. The aim of this study was to identify pathways contributing to anthracycline resistance using isogenic drug resistant breast cancer cell lines. We generated isogenic MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines, which were cross-resistant to doxorubicin and SN-38; the SKBR3 cell line was also resistant to taxanes. Epirubicin-resistant cells were morphologically different from native cells, and had alterations in apoptosis and cell cycle profile. Using gene expression and small-molecule inhibitor analyses we identified deregulation of histone H2A and H2B genes in all four cell lines. These genes contribute to several biological pathways, which include cell cycle, chromosomal maintenance, epigenetics, RNA and mitochondrial transcription. Histone deacetylase and cell cycle/DNA damage small molecule inhibitors reversed resistance and were cytotoxic for all four epirubicin-resistant cell lines confirming that histone and cell cycle pathways are associated with epirubicin resistance. This study has established model systems for investigating drug resistance in all four breast cancer subtypes and revealed key pathways that contribute to anthracycline resistance. The global gene expression analysis included 4 parental (anthracycline sensitive) and 4 resistant breast cancer cell lines, in biological triplicates.
Project description:Drug resistance in breast cancer is the major obstacle to a successful outcome following chemotherapy treatment. While upregulation of multidrug resistance (MDR) genes is a key component of drug resistance in multiple cancers, the complexity and hierarchy of non-MDR driven drug resistance pathways are still largely unknown. The aim of this study was to identify pathways contributing to anthracycline resistance using isogenic drug resistant breast cancer cell lines. We generated isogenic MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines, which were cross-resistant to doxorubicin and SN-38; the SKBR3 cell line was also resistant to taxanes. Epirubicin-resistant cells were morphologically different from native cells, and had alterations in apoptosis and cell cycle profile. Using gene expression and small-molecule inhibitor analyses we identified deregulation of histone H2A and H2B genes in all four cell lines. These genes contribute to several biological pathways, which include cell cycle, chromosomal maintenance, epigenetics, RNA and mitochondrial transcription. Histone deacetylase and cell cycle/DNA damage small molecule inhibitors reversed resistance and were cytotoxic for all four epirubicin-resistant cell lines confirming that histone and cell cycle pathways are associated with epirubicin resistance. This study has established model systems for investigating drug resistance in all four breast cancer subtypes and revealed key pathways that contribute to anthracycline resistance.
Project description:To explore novel lncRNAs relative to chemo-resistance in breast cancer, we performed lncRNA microarray analysis using three anthracycline-resistant tissues and three anthracycline-sensitive tissues collected before neoadjuvant chemotherapy by Arraystar Human LncRNA Microarray V3.0.