Project description:There is currently no reliable tool available to measure immune dysfunction in septic patients in the clinical setting. This proof-of-concept study assesses the potential of gene expression profiling of whole blood as a tool to monitor immune dysfunction in critically ill septic patients. Whole blood samples were collected daily for up to 5 days from patients admitted to the intensive care unit with sepsis. RNA isolated from whole blood samples was assayed on Illumina HT-12 gene expression microarrays consisting of 48,804 probes. Microarray analysis identified 3677 genes as differentially expressed across 5 days between septic patients and healthy controls. Of the 3677 genes, biological pathway analysis identified 86 genes significantly down-regulated in the sepsis patients were present in pathways relating to immune response. These 86 genes correspond to known immune pathways implicated in sepsis including lymphocyte depletion, reduced T lymphocyte activation and deficient antigen presentation. Furthermore, expression levels of these genes correlated with clinical severity, with a significantly greater degree of down-regulation found in non-survivors compared to survivors. The results show that whole blood gene-expression analysis can capture systemic immune dysfunctions in septic patients. Our study provides an experimental basis to support further study on the use of a gene expression based assay, to assess immunosuppression and guide immunotherapy in future clinical trials. Daily PAXgene samples for up to 5 days for sepsis survivors (n=26), sepsis nonsurvivors (n=9), and healthy controls (n=18).
Project description:Homo sapiens fresh whole blood was infected with Candida parapsilosis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Homo sapiens gene expression.
Project description:Homo sapiens fresh whole blood was infected with Candida glabrata. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Candida glabrata gene expression.
Project description:Homo sapiens fresh whole blood was infected with Candida tropicalis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Candida tropicalis gene expression.
Project description:Homo sapiens fresh whole blood was infected with Candida albicans SC5314. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Expression measurement of Homo sapiens genes.
Project description:Background: Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. Results: The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (infection with SIRS), including 78 sepsis survivors and 28 sepsis nonsurvivors, who had previously undergone plasma proteomic and metabolomic profiling. The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflective of immune activation in sepsis. The expression of 1,238 genes differed with sepsis outcome: Nonsurvivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease â rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors, and these were associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. Conclusions: Host response in sepsis survivors â activation of immune response-related genes â was muted in sepsis nonsurvivors. The association of sepsis survival with robust immune response and presence of missense variants in VPS9D1 warrants replication and further functional studies. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS, n=23) or sepsis (infection with SIRS), including 78 sepsis survivors and 28 sepsis nonsurvivors, who had previously undergone plasma proteomic and metabolomic profiling.
Project description:Sepsis is defined as a systemic inflammatory response secondary to a proven or suspected infection. Mechanisms governing this inflammatory response have been shown to be complex and dynamic, involving cross-talking among diverse signaling pathways. However, current knowledge on mechanisms underlying sepsis is far from providing a complete picture of the syndrome, justifying additional efforts that might add to this scenario. Microarray-based expression profiling is a powerful approach for the investigation of complex clinical conditions such as sepsis: the analysis of gene transcription at the genome level potentially avoids results derived from biased assumptions. In this study we investigate whole-genome gene expression profiles of mononuclear cells from survivor and non-survivor septic patients. Blood samples were collected at the time of sepsis diagnosis and seven days later, allowing us to evaluate the role of biological processes or genes possibly involved in patient recovery. Aiming to circumvent, at least partially, the heterogeneity of septic patients we included only patients admitted with sepsis caused by community-acquired pneumonia. Global gene expression profiling allowed us to characterize early sepsis, as compared to healthy individuals. Our results corroborate literature reports on inflammation response in the early stages of sepsis but highlight great heterogeneity in gene expression during sepsis progress. Additionally, global gene expression in the early stage was also able to distinguish sepsis from septic shock and correlated with patient outcome. Differences in oxidative stress seem to be associated with clinical outcome, since significant differences in the expression profile of related genes were observed between survivors and non-survivors at the time of patient enrollment (early sepsis). However, our results substantiate current knowledge supporting that sepsis syndrome development is indeed multifaceted. Although the initial infection of enrolled patients was pneumonia, seven days later gene expression profiles seemed to be characteristic of each patient, common gene expression changes distinguishing survivors from non-survivors. This result could be associated with the underlying health status of each one of them, with complications due to sepsis itself as well as with distinct timing for response to treatment. In this study we investigate whole-genome gene expression profiles of mononuclear cells from survivor (n=5) and non-survivor (n=5) septic patients, as well as from 3 healthy controls. Blood samples were collected at the time of sepsis diagnosis and seven days later, allowing us to evaluate the role of biological processes or genes possibly involved in patient recovery. Aiming to circumvent, at least partially, the heterogeneity of septic patients we included only patients admitted with sepsis caused by community-acquired pneumonia.
Project description:There is currently no reliable tool available to measure immune dysfunction in septic patients in the clinical setting. This proof-of-concept study assesses the potential of gene expression profiling of whole blood as a tool to monitor immune dysfunction in critically ill septic patients. Whole blood samples were collected daily for up to 5 days from patients admitted to the intensive care unit with sepsis. RNA isolated from whole blood samples was assayed on Illumina HT-12 gene expression microarrays consisting of 48,804 probes. Microarray analysis identified 3677 genes as differentially expressed across 5 days between septic patients and healthy controls. Of the 3677 genes, biological pathway analysis identified 86 genes significantly down-regulated in the sepsis patients were present in pathways relating to immune response. These 86 genes correspond to known immune pathways implicated in sepsis including lymphocyte depletion, reduced T lymphocyte activation and deficient antigen presentation. Furthermore, expression levels of these genes correlated with clinical severity, with a significantly greater degree of down-regulation found in non-survivors compared to survivors. The results show that whole blood gene-expression analysis can capture systemic immune dysfunctions in septic patients. Our study provides an experimental basis to support further study on the use of a gene expression based assay, to assess immunosuppression and guide immunotherapy in future clinical trials.
Project description:This SuperSeries is composed of the following subset Series: GSE20680: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the Cathgen Registry GSE20681: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the PREDICT Trial Refer to individual Series
Project description:Background: Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. Results: The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (infection with SIRS), including 78 sepsis survivors and 28 sepsis nonsurvivors, who had previously undergone plasma proteomic and metabolomic profiling. The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflective of immune activation in sepsis. The expression of 1,238 genes differed with sepsis outcome: Nonsurvivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease – rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors, and these were associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. Conclusions: Host response in sepsis survivors – activation of immune response-related genes – was muted in sepsis nonsurvivors. The association of sepsis survival with robust immune response and presence of missense variants in VPS9D1 warrants replication and further functional studies.