Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep abortion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep abortion isolates of C. jejuni was investigated by Array-based CGH Each isolate was compared to IA3902, a dye-swap replicate was applied for each isolate
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep aborion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep aborion isolates of C. jejuni was investigated by Array-based CGH Each isolate was compared to IA3902, a dye-swap replicate was applied for each isolate
Project description:A highly pathogenic Campylobacter jejuni clone has recently emerged as the major cause of Campylobacter-associated sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the pathogenic mechanisms of this hyper virulent clone, the differences in global gene expression patterns between this hyper virulent clone (IA3902) and a non-abortifacient strain (NCTC 11168) were compared by DNA microarray. One-condition experiment, IA3902 vs NCTC11168. Biological replicates: 3 IA3902 , 3 NCTC11168. One replicate per array.
Project description:A highly pathogenic Campylobacter jejuni clone has recently emerged as the major cause of Campylobacter-associated sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the pathogenic mechanisms of this hyper virulent clone, the differences in global gene expression patterns between this hyper virulent clone (IA3902) and a non-abortifacient strain (NCTC 11168) were compared by DNA microarray.
Project description:Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-95 target=_blank>BuG@Sbase</a>
Project description:Replicates of strains used in comparison of microarray to RAPD analysis for the publication. Findings from use of an open-reading frame-specific Campylobacter jejuni DNA microarray to investigate genetic diversity among clinical isolates associated with 5 independent clusters of infection were compared with data from random amplified polymeric DNA (RAPD) and Penner serotyping analyses. The DNA microarray provides a highly specific epidemiological typing tool for analysis of C. jejuni isolates and reveals both divergent and highly conserved gene classes among isolates Set of arrays that are part of repeated experiments Keywords: Biological Replicate