Project description:Activated but not resting Tregs affect NK cell differentiation. We used microarray analysis to study differences of gene expression of NK cell differentiation in the presence of resting or activated Tregs.
Project description:<p>Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining <em>in situ</em> metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1a as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+) levels. The HIF-1a/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steadystate conditions. In contrast, in activated NK cells under hypoxia, HIF-1a is required for glycolysis, and forced HIF-1a expression boosts glycolysis and NK cell performance <em>in vitro</em> and <em>in vivo</em>. Our data highlight two distinct pathways by which HIF-1a interferes with NK cell metabolism. While HIF-1a-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1a-dependent tryptophan/NAD+ metabolism.</p><p><br></p><p><strong>Linked cross omic data sets:</strong></p><p>RNA-seq data associated with this study are available in ArrayExpress (BioStudies): accession <a href='https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12082' rel='noopener noreferrer' target='_blank'>E-MTAB-12082</a>.</p>
Project description:NGS-based assesement of miRNA expression and post-transcriptional modification kinetics in human primary resting and activated natural killer (NK) cells and their released small EVs
Project description:Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g. granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes has been established, little is known about miRNAs in NK cells. Here, we utilized two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by RT-qPCR and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 28 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range, exhibit isomiR complexity, and a subset is differentially expressed following cytokine-activation. Using this miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine-activation. Further, we demonstrate that miR-223 specifically targets the 3’UTR of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology. Illumina GA (SRR036363, SRR036364) and SOLiD (SRR036206, SRR036210) sequencing data have been submitted to the NCBI Sequence Read Archive (SRA). The study uses a custome made array to characterize miRNA of activated and resting murine splenic natural killer cells
Project description:We found that treatment with the TDB mosunetuzumab in patients resulted in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon using PBMCs in vitro and found that TDB-mediated killing activated NK cells, increasing natural killing and antibody dependent cytotoxic (ADCC) function. To define TDB-mediated NK cell activation, we sorted NK cells from PBMCs at baseline and after TDB treatment and performed RNAseq.
Project description:This study will measure the activity of natural killer (NK) cells using the in vitro diagnostic device NK Vue in high risk subjects (Quebec risk categories P2, P3 and P4) scheduled for colonoscopy.
Project description:The release of soluble ligands of activating Natural Killer (NK) cell receptors may represent a regulatory mechanism of NK cell function both in physiologic and in pathologic conditions. Here, we identified the extracellular matrix protein Nidogen-1 (NID1) as a ligand of NKp44, an important activating receptor expressed by activated NK cells. When released as soluble molecule, NID1 can regulate NK cell function by modulating NKp44-induced IFN-γ production or cytotoxicity. We also show that NID1 may be present at the cell surface. In this form or when bound to a solid support (bNID1), NID1 failed to induce NK cell cytotoxicity or cytokine release. However, analysis by mass spectrometry revealed that exposure to bNID1 can induce relevant changes in the proteomic profiles suggesting an effect on different, biological processes of human NK cells.
Project description:Natural Killer cells (NK), a major constituent of innate immune system, have the ability to kill the transformed and infected cells without prior sensitization; can be put to immunotherapeutic use against various malignancies. NK cells discriminate between normal cells and transformed cells via a balance of inhibitory and activating signals induced by interactions between NK cell receptors and target cell ligands. Present study investigates whether expansion of NK cells could augment their anti-myeloma (MM) activity. For NK cell expansion, peripheral blood mononuclear cells from healthy donors and myeloma patients were co-cultured with irradiated K562 cells transfected with 4-1BBL and membrane-bound IL15 (K562-mb15-41BBL). A genome-wide profiling approach was performed to identify gene expression signature in expanded NK (ENK) cells and non-expanded NK cells isolated from healthy donors and myeloma patients. A specific set of genes involved in proliferation, migration, adhesion, cytotoxicity, and activation were up regulated post expansion, also confirmed by flow cytometry. Exp-NK cells killed both allogeneic and autologous primary MM cells more avidly than non-exp-NK cells in vitro. Multiple receptors, particularly NKG2D, natural cytotoxicity receptors, and DNAM-1 contributed to target lysis, via a perforin mediated mechanism. In summary, vigorous expansion and high anti-MM activity both in vitro and in vivo provide the rationale for testing exp-NK cells in a clinical trial for high risk MM. Differential gene expression profile in expanded natural killer (ENK) cells and non-expanded natural killer (NK) cells from healthy donors and myeloma patients Eight healthy donor and eight myeloma patients were used in the study. Non-expanded natural killer (NK) cells were isolated from PBMCs of healthy donors and myeloma patients. Expanded natural killer (ENK) cells were generated from same set of samples as mentioned in expansion protocol. All ENK and NK cells were used for gene expression profiling.
Project description:Gene expression profiles of subsets of CD4+ T cells according to their expression of FoxP3 and CD45RA were compared. Abstract: FoxP3 is a key transcription factor for the development and function of natural CD4+ regulatory T cells (Tregs). Here we show that human FoxP3+CD4+ T cells are composed of three phenotypically and functionally distinct subpopulations: CD45RA+FoxP3low resting Tregs (rTregs) and CD45RA-FoxP3high activated Tregs (aTregs), both of which are suppressive in vitro, and cytokine-secreting CD45RA-FoxP3low non-suppressive T cells. The proportion of the three subpopulations characteristically altered in cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTregs rapidly die while rTregs proliferate and convert into aTregs in vitro and in vivo as shown by the transfer of rTregs into NOD-scid-common gamma-chain-knockout mice and by TCR sequence-based T cell clonotype tracing in peripheral blood of normal individuals. Taken together, the dissection of FoxP3+ cells into subsets enables one to analyze Treg differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3+ subpopulations. RNA was extracted from freshly obtained peripheral blood lymphocytes from a healthy donor that were separated according to their expression of CD25, CD127 and CD45RA after surface staining.