Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors Gene expression profiles of Huh-7 cells stably expressing NDRG3-shRNA or HIF-1α-shRNA under normoxia were compared to gene expression profiles of Huh-7 stable cells under hypoxia for 6, 12 and 24 hours.
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors Gene expression profiles of Huh-7 cells stably expressing NDRG3-shRNA or HIF-1α-shRNA under normoxia were compared to gene expression profiles of Huh-7 stable cells under hypoxia for 3, 6, 12 and 24 hours.
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors
Project description:Hypoxia-inducible factor 1 (HIF-1) is a transcriptional regulator that mediates cellular adaptive responses to hypoxia. Hypoxia-inducible factor 1α (HIF-1α) is involved in the development of ascites syndrome (AS) in broiler chickens. Therefore, studying the effect of HIF-1α on the cellular transcriptome under hypoxic conditions will help to better understand the mechanism of HIF-1α in the development of AS in broilers. In this study, we analyzed the gene expression profile of the DF-1 cell line under hypoxic conditions by RNA-seq. Additionally, we constructed the HIF-1α knockdown DF-1 cell line by using the RNAi method and analyzed the gene expression profile under hypoxic conditions. The results showed that exposure to hypoxia for 48 hours had a significant impact on the expression of genes in the DF-1 cell line, which related to cell proliferation, stress response, and apoptosis. In addition, after HIF-1α knockdown more differential expression genes appeared than in wild-type cells, and the expression of most hypoxia-related genes was either down-regulated or remained unchanged. Pathway analysis results showed that differentially expressed genes were mainly enriched in pathways related to cell proliferation, apoptosis, and oxidative phosphorylation. Our study obtained transcriptomic data from chicken fibroblasts at different hypoxic times and identified the potential regulatory network associated with HIF-1α. This data provides valuable support for understanding the transcriptional regulatory mechanism of HIF-1α in the development of AS in broilers.
Project description:Increased levels of hypoxia and hypoxia inducible factor 1α (HIF-1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged anti-angiogenic therapy of tumors can delay tumor growth but may also increase hypoxia and HIF-1α activity. In our recent clinical trial, treatment with the anti-vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, followed by a combination of bevacizumab and radiation led to near complete necrosis in nearly half of sarcomas. Gene set enrichment analysis of microarrays from pre-treatment biopsies found the Gene Ontology category “Response to hypoxia” was upregulated in poor responders, and hierarchical clustering based on 140 hypoxia-responsive genes separated poor responders from good responders. The most commonly used chemotherapeutic drug for sarcomas, doxorubicin (Dox), was recently found to block HIF-1α binding to DNA at low metronomic doses. We thus examined Dox treatment in 4 sarcoma cell lines, and found Dox at low concentrations (1-10 uM) blocked HIF-1α induction of VEGF-A by 84-97%, while inhibition of other HIF-1α-target genes including CA9, c-Met and FOXM1 was variable. HT1080 sarcoma xenografts had increased hypoxia and/or HIF-1α activity with increasing tumor size and with anti-VEGF receptor antibody (DC101) treatment. Combining DC101 and metronomic Dox had a synergistic effect in suppressing growth of HT1080 xenografts, primarily via induction of tumor endothelial cell apoptosis. In conclusion, sarcomas respond to increased hypoxia by expressing HIF-1α-target genes which may promote resistance to anti-angiogenic and other therapies. Metronomic Dox can block HIF-1α activation of target genes and works synergistically with anti-VEGF therapy to inhibit sarcomas. Pre-treatment biopsies were collected from 16 human sarcoma. The gene expression analysis was performed using Illumina platform.
Project description:Injured peripheral neurons successfully activate a pro-regenerative transcriptional program to enable axon regeneration and functional recovery. How transcriptional regulators coordinate the expression of such programs remains unclear. Here we show that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the pre-conditioning lesion effect. Knockdown of HIF-1α in vitro or conditional knockout in vivo impairs sensory axon regeneration. The HIF-1α target gene Vascular Endothelial Growth Factor A (VEGFA) is expressed in injured neurons and contributes to stimulate axon regeneration. Induction of HIF-1α using hypoxia enhances axon regeneration in vitro and in vivo in sensory neurons. Hypoxia also stimulates motor neuron regeneration and accelerates neuromuscular junction reinnervation. This study demonstrates that HIF-1α represents a critical transcriptional regulator in regenerating neurons and suggests hypoxia as a tool to stimulate axon regeneration.
Project description:Chronic hypoxia induces pulmonary vascular remodeling and pulmonary hypertension (PH). While it is established that transcription factors, hypoxia-inducible factors (HIF-1α/HIF-2α) activate gene programs that drive hypoxia-induced PH, the mechanism of HIF-1/2 activation is less clear. Here, we report that carboxylterminus of Hsp70-interacting protein (CHIP or Stub1) modulates HIF-1α and HIF-2α transcription rather than reducing their stability. Knocking-down Stub1 reduced hypoxic activation of HIF-1α mRNA, protein, and activity while enhancing hypoxic induction of HIF-2α mRNA, protein, and target genes in pulmonary vascular cells. Mechanistically, CBP/p300-mediated acetylation of lysine (K287) inactivates the ubiquitin ligase activity of Stub1 and triggers its translocation from the cytoplasm into the nucleus. There, it recognizes the HIF promoter and hypoxia response elements (HREs) in target genes. Expression of Stub1-K287Q mutant (mimicking acetylation) enhanced hypoxia-induced HIF-1α expression, while acetyl-deficient Stub1-K287R mutant had the opposite effect on HIF-α but enhanced hypoxia-induced HIF-2α transcriptional activity. Endothelial-Stub1 transgenic mice tolerated chronic hypoxia better, had less pulmonary vascular remodeling, reduced pulmonary vascular resistance, and greater cardioprotection. Thus, Stub1 nuclear translocation enhances hypoxic induction of HIF-1α activity while suppressing deleterious effects of HIF-2α. These observations indicate that nuclear-Stub1 synergizes with HIF-1α to promote transcriptional responses and antagonizes HIF2α-driven PH in chronic hypoxia.