Project description:Transcript data affected by natural variation or PME17 mutation in Arabidopsis thaliana, infested or not with the aphid Myzus persicae
Project description:Expression profiles of MicroRNA and SiRNA of Arabidopsis thaliana Col-0 and transgenic plants with constitutive expression of the chimeric receptors NRG1 grown at different temperature To reveal the underlying molecular mechanism of de-cosuppression with memory by high temperature in Arabidopsis, we performed the expression profiles of microRNA and SiRNA in transgenic plants with constitutive expression of the chimeric receptors NRG1 and wide type Col-0 grown at different temperature using the Custom LC Sciences Arabidopsis microRNA and SiRNA array. Keywords: high temperature, de-cosuppression, MicroRNA, SiRNA
Project description:Histone acetylation and methylation regulate gene expression in eukaryotes, but their effects on the transcriptome of a multicellular organism and on the transcriptomic divergence between species are still poorly understood. Here we present the first genome-wide 1-bp resolution maps of histone acetylation, histone methylation and core histone in Arabidopsis thaliana and a comprehensive analysis of these maps and gene expression data in A. thaliana, A. arenosa and allotetraploids. H3K9 acetylation (H3K9ac) and H3K4 trimethylation (H3K4me3) are correlated, and their high densities near transcriptional start sites determine constitutive expression of genes involved in translation. In contrast, broad distributions of these modifications toward coding regions determine expression variation, especially in genes involved in photosynthesis, carbohydrate metabolism, and defense responses. A dispersed distribution of H3K27me3 and depletion of H3K9ac and H3K4me3 are associated with developmentally repressed genes. Finally, genes affected by histone deacetylase mutation and species divergence tend to show high expression variation. In conclusion, changes in histone acetylation and methylation modulate developmental and environmental gene expression variation within and between species.