Project description:The replication timing program, or the order in which DNA is duplicated during S-phase, is associated with various features of chromosome structure and function, including gene expression, histone modifications, and 3-D compartmentalization of chromatin.
Project description:The replication timing program, or the order in which DNA is duplicated during S-phase, is associated with various features of chromosome structure and function, including gene expression, histone modifications, and 3-D compartmentalization of chromatin. 3 cell types, with a total of 6 individual replicates
Project description:<p>In this study we used next generation deep sequencing technologies to analyze the genomes of Harvard University Stem Cell lines 63 and 64. We performed 101-bp paired-end whole genome sequencing of the two cell lines using Illumina HiSeq platforms. The sequence reads obtained were analyzed for copy number and used for replication timing analysis. Our data suggests that read depth profiles can be used to map replication timing in Embryonic Stem Cells (ESCs). Further we observe that replication profiles are highly correlated across ESCs but distinct from those of other cell types such as Lymphoblastoid Cell Lines (LCLs). These results demonstrated that read depth data from whole genome sequencing can be used to study variation in replication timing within the human population and across different cell types. Whole genome sequences from HUES63 and HUES64 used for this study are being submitted.</p>
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Suz12 exon 4 encodes 23 amino acids (aa 129–152 in SUZ12-L) that partially overlap with the WD-binding domain 1 (WDB1, 110–145). We reasoned that exon 4 skipping might alter the structure of SUZ12 and, possibly, PRC2 composition. To explore this possibility, we generated ESCs that lack the Suz12 exon 4 via CRISPR-Cas9–induced deletion. In addition, to rule out any biases due to the expression levels and/or SUZ12 epitope masking, we generated Suz12 knockout (KO) ESCs (herein, KO) in which Suz12 expression was subsequently rescued by re-introducing either the Suz12-L or Suz12-S mouse isoform fused to a triple-Flag tag under the regulation of a CAG promoter (KO+L/S; Figures S2H–S2K). We performed SUZ12 immunoprecipitation coupled with mass spectrometry (IP-MS) in the WT and ∆ex4 clones to compare their interactomes and with a flag antibody in the KO and rescue cell lines. As expected, no peptides corresponding to exon 4 were retrieved in ∆ex4 samples, while the rest of the sequence displayed similar coverage. Comparison of interactors in the two conditions revealed that SUZ12 binding to AEBP2 and JARID2 was strongly reduced in ∆ex4 cells with respect to WT cells, whereas SUZ12 binding to most core components or to PRC2.1-specific factors was unchanged or only slightly increased . These observations were confirmed by SUZ12 IP followed by Western blot (WB). Flag IP-MS in rescue cells confirmed that, while the long isoform was able to correctly form comparable amounts of both PRC2.1 and PRC2.2 subtypes, interaction of the SUZ12-S with PRC2.2-specific factors was drastically reduced.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.