Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of these bacteria can also degrade host glycans, such as mucins, the main component of the protective gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans affects the degradation of dietary fibres by the human microbiota. Here, we used three dietary fibres (apple pectin, β-glucan and xylan) to study in vitro the dynamics of colon mucin and dietary fibre degradation by the human faecal microbiota. The dietary fibres showed clearly distinguishing modulatory effects on faecal microbiota composition. The utilization of colon mucin in cultures led to alterations in microbiota composition and metabolites. Metaproteome analysis showed the central role of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main degrader of colonic mucin. This work demonstrates the intricacy of complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to alterations in the metabolism of dietary fibres. Metaproteomics analysis of this data reveals the functional activities of the bacteria in consortia, by this contributing to a better understanding of the complex metabolic pathways within the human microbiota that can be manipulated to maximise beneficial microbiota-host interactions. In this study two different mucin samples were used: commercial porcine gastric mucin and in house prepared porcine colonic mucin. This dataset analyses the proteome of: A) autoclaved porcine colonic mucin; B) not autoclaved porcine colonic mucin; C) porcine gastric mucin.
Project description:Since CNVs play a vital role in genomic studies, it is an imperative need to develop a comprehensive, more accurate and higher resolution porcine CNV map with practical significance in follow-up CNV functional analyses To detect CNV of pigs, we performed high density aCGH data of diverse pig breeds in the framework of the pig draft genome sequence (Sscrofa10.2)