Project description:Recent studies have implicated KDM3A, which catalyzes removal of H3K9 methylation, is associated with tumorigenesis. However, the biological role of KDM3A in multiple myeloma, has not been delineated. Here we identify KDM3A-KLF2-IRF4 axis dependence in multiple myeloma. We demonstrate that knockdown of KDM3A leads to apoptosis and significant growth inhibition in myeloma cells. Mechanistically, KDM3A directly regulates myeloma cell survival factor IRF4 expression through H3K9 demethylation at its promoter. We further show that KDM3A directly regulates KLF2 expression and that knockdown of KLF2 leads to growth inhibition in myeloma cells. The goal of this analysis is to identify genes whose expression changes after shRNA-mediated knockdown of KDM3A and KLF2 using the human U133 plus 2.0 Affymetrix GeneChip in myeloma cell line (RPMI8226). Two independent experiments were performed: 1. Myeloma cell line (RPMI8226) was transduced with either shRNAs targeting KDM3A (duplicate hairpins) or luciferase (control) in duplicate. The gene expression profiles of KDM3A knockdown cells were compared with that of control cells. A total of 6 RNA samples (4 KDM3A knockdown and 2 control) were analyzed. 2. Myeloma cell line (RPMI8226) was transduced with either shRNAs targeting KLF2 (duplicate hairpins) or luciferase (control) in duplicate. The gene expression profiles of KLF2 knockdown cells were compared with that of control cells. A total of 6 RNA samples (4 KLF2 knockdown and 2 control) were analyzed.
Project description:Recent studies have implicated KDM3A, which catalyzes removal of H3K9 methylation, is associated with tumorigenesis. However, the biological role of KDM3A in multiple myeloma, has not been delineated. Here we identify KDM3A-KLF2-IRF4 axis dependence in multiple myeloma. We demonstrate that knockdown of KDM3A leads to apoptosis and significant growth inhibition in myeloma cells. Mechanistically, KDM3A directly regulates myeloma cell survival factor IRF4 expression through H3K9 demethylation at its promoter. We further show that KDM3A directly regulates KLF2 expression and that knockdown of KLF2 leads to growth inhibition in myeloma cells. The goal of this analysis is to identify genes whose expression changes after shRNA-mediated knockdown of KDM3A and KLF2 using the human U133 plus 2.0 Affymetrix GeneChip in myeloma cell line (RPMI8226).
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.