Project description:The erythrocruorin from the snail Planorbis corneus had a sedimentation coefficient, so/20,w, of 33.5 +/- 0.31 S, and a molecular weight of 1.65 x 10(6) +/- 0.04 x 10(6) by high-speed sedimentation-equilibrium ultracentrifugation. The amino acid composition and absorption spectrum of the protein are reported. A very low number of half-cystine residues was found, corresponding to 0.4 residue per haem group. The haem content was 2.76 +/- 0.22%, corresponding to a protein molecular weight of about 22300. Under both acid and alkaline conditions partial dissociation took place to yield mixtures of products that could not be identified. A subunit corresponding to that containing one haem group was not obtained under any of the dossociating conditions tried. Electron microscopy revealed a ring-shaped molecule about 12.2 +/- 0.5 nm in diameter. The native erythrocruorin bound O2 co-operatively, the intermediate value of h in Hill plots having values between 1.7 and 3.4 depending on the conditions.
Project description:Co-expression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting the functional roles of individual genes at a system-wide scale. To enable network reconstructions we built a large-scale gene expression atlas comprised of 62,547 mRNAs, 17,862 non-modified proteins, and 6,227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. There was little edge conservation in co-expression and GRNs reconstructed using transcriptome versus proteome data yet networks from either data type were enriched in ontological categories and effective in predicting known regulatory relationships. This integrated gene expression atlas provides a valuable community resource. The networks should facilitate plant biology research and they provide a conceptual framework for future systems biology studies highlighting the importance of studying gene regulation at several levels.
Project description:Co-expression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting the functional roles of individual genes at a system-wide scale. To enable network reconstructions we built a large-scale gene expression atlas comprised of 62,547 mRNAs, 17,862 non-modified proteins, and 6,227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. There was little edge conservation in co-expression and GRNs reconstructed using transcriptome versus proteome data yet networks from either data type were enriched in ontological categories and effective in predicting known regulatory relationships. This integrated gene expression atlas provides a valuable community resource. The networks should facilitate plant biology research and they provide a conceptual framework for future systems biology studies highlighting the importance of studying gene regulation at several levels.