Project description:Aberrant cell proliferation, a hallmark of most cancers, requires the escape from intrinsic antitumour barriers. Primary among these is the DNA damage response (DDR). In both cell culture-models and in early stages of tumorigenesis in vivo, activated oncogenes induce DNA replication stress and DNA double-strand breaks (DSBs), leading to DDR activation and p53-dependent apoptosis and/or senescence. The means by which tumour initiating cells, also termed cancer stem cells (CSCs), circumvent this oncosuppressive response is unknown. Here we demonstrate that the ZEB1 transcription factor provides breast CSCs with the ability to withstand an aberrant mitogenic activity. Its forced expression in human mammary epithelial cells is sufficient to alleviate DNA replicative stress and to decrease the production of reactive oxygen species, an important contributor to DDR and oncogene-induced senescence. Consistently, human breast cancer cells with endogenous ZEB1 expression show two characteristic features: low levels of DSBs and DDR markers, reflecting mitigation of the DNA replication stress, and a low p53 mutation frequency, reflecting a weak selective pressure for inactivation. Using high-throughput sequencing analysis of controlled cellular models, we further demonstrate that ZEB1 delays the onset of structural chromosomal instability (CIN), a known consequence of replicative stress and prevents the emergence of chromosome 8p deletions and 8q amplifications, two prevalent abnormalities in high grade breast cancers. Supporting these findings, ZEB1 expression discriminates human breast tumours by their copy number alterations (CNAs) and chromosome 8 aberrations. We propose that the tumorigenic potential of CSCs relies upon their unique capacity to tolerate oncogenic stimuli through the alleviation of DNA replication stress. Immortalized human mammary epithelial cells were infected with retrovirus expressing H-RASV12 with or without a retrovirus expressing ZEB1.
Project description:Aberrant cell proliferation, a hallmark of most cancers, requires the escape from intrinsic antitumour barriers. Primary among these is the DNA damage response (DDR). In both cell culture-models and in early stages of tumorigenesis in vivo, activated oncogenes induce DNA replication stress and DNA double-strand breaks (DSBs), leading to DDR activation and p53-dependent apoptosis and/or senescence. The means by which tumour initiating cells, also termed cancer stem cells (CSCs), circumvent this oncosuppressive response is unknown. Here we demonstrate that the ZEB1 transcription factor provides breast CSCs with the ability to withstand an aberrant mitogenic activity. Its forced expression in human mammary epithelial cells is sufficient to alleviate DNA replicative stress and to decrease the production of reactive oxygen species, an important contributor to DDR and oncogene-induced senescence. Consistently, human breast cancer cells with endogenous ZEB1 expression show two characteristic features: low levels of DSBs and DDR markers, reflecting mitigation of the DNA replication stress, and a low p53 mutation frequency, reflecting a weak selective pressure for inactivation. Using high-throughput sequencing analysis of controlled cellular models, we further demonstrate that ZEB1 delays the onset of structural chromosomal instability (CIN), a known consequence of replicative stress and prevents the emergence of chromosome 8p deletions and 8q amplifications, two prevalent abnormalities in high grade breast cancers. Supporting these findings, ZEB1 expression discriminates human breast tumours by their copy number alterations (CNAs) and chromosome 8 aberrations. We propose that the tumorigenic potential of CSCs relies upon their unique capacity to tolerate oncogenic stimuli through the alleviation of DNA replication stress.
Project description:Aberrant cell proliferation, a hallmark of most cancers, requires the escape from intrinsic antitumour barriers. Primary among these is the DNA damage response (DDR). In both cell culture-models and in early stages of tumorigenesis in vivo, activated oncogenes induce DNA replication stress and DNA double-strand breaks (DSBs), leading to DDR activation and p53-dependent apoptosis and/or senescence. The means by which tumour-initiating cells, also termed cancer stem cells (CSCs), circumvent this oncosuppressive response is unknown. Here we demonstrate that the ZEB1 transcription factor provides breast CSCs with the ability to withstand an aberrant mitogenic activity. Its forced expression in human mammary epithelial cells is sufficient to alleviate DNA replicative stress and to decrease the production of reactive oxygen species, an important contributor to DDR and oncogene-induced senescence. Consistently, human breast cancer cells with endogenous ZEB1 expression show two characteristic features: low levels of DSBs and DDR markers, reflecting mitigation of the DNA replication stress, and a low p53 mutation frequency, reflecting a weak selective pressure for inactivation. Using high-throughput sequencing analysis of controlled cellular models, we further demonstrate that ZEB1 delays the onset of structural chromosomal instability (CIN), a known consequence of replicative stress and prevents the emergence of chromosome 8p deletions and 8q amplifications, two prevalent abnormalities in high-grade breast cancers. Supporting these findings, ZEB1 expression discriminates human breast tumours by their copy number alterations (CNAs) and chromosome 8 aberrations. We propose that the tumorigenic potential of CSCs relies upon their unique capacity to tolerate oncogenic stimuli through the alleviation of DNA replication stress.
Project description:Genomic instability is a prominent driver of tumorigenesis. However, a significant fraction of human cancers display few genomic aberrations, suggesting alternative roads towards malignancy. Here, we show that the differentiation status of normal human mammary epithelial cells influences the early response to an oncogenic activation and determines the genetic routes towards tumorigenesis. Following an oncogenic insult, luminal progenitors and differentiated luminal cells undergo oxidative and DNA replication stress, initiating genomic instability. In contrast, mammary stem cells exhibit the innate capacity to withstand aberrant mitogenic activation, fostering malignant transformation. This property relies upon a pre-emptive program driven by the ZEB1 transcription factor and the methionine sulfoxide reductase MSRB3. The ZEB1-MSRB3 axis governs cellular pliancy and prevents the continuous formation of oncogene-induced DNA damage, leading to neoplasms with unique pathological features. These gene expression data correspond to the different subpopulations that compose the hierarchy of normal human mammary epithelial cells. These subpopulations were freshly isolated from mammary tissue, originating from reduction mammoplasties and flow sorted using four markers (EpCAM, CD10, CD49f, ALDH). Three subpopulations enriched in mammary stem cells (MaSCs) are designed as MaSC1, 2, 3; the luminal progenitor are designed as LP, and the mature luminal cells as mL1 and mL2.
Project description:Human pluripotent stem cells (hPSCs) tend to acquire chromosomal aberrations in culture, which may increase their tumorigenicity. However, the cellular mechanism(s) underlying these aberrations are largely unknown. Here we show that the DNA replication in aneuploid hPSCs is perturbed, resulting in high prevalence of defects in chromosome condensation and segregation. Global gene expression analyses in aneuploid hPSCs revealed decreased levels of actin cytoskeleton genes and their common transcription factor SRF. Down-regulation of SRF or chemical perturbation of actin cytoskeleton organization in diploid hPSCs resulted in increased replication stress and perturbation of chromosome condensation, recapitulating the findings in aneuploid hPSCs. Altogether, our results revealed that in hPSCs DNA replication stress results in a distinctive defect in chromosome condensation, underlying their ongoing chromosomal instability. Our results shed a new light on the mechanisms leading to ongoing chromosomal instability in hPSCs, and may be relevant to tumor development as well. Expression data from diploid human pluripotent stem cells Total RNA was isolated from undifferentiated human pluripotent stem cells grown under standard human ES conditions or under condition media
Project description:Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, which remain unidentified, for resolution. In this study, we identified the NMDA receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout (KO) mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
Project description:Colorectal cancer (CRC) is the third most common cancer worldwide. Recent studies pinpointed TIMELESS (TIM) to be crucially involved in replication protection/genomic stability, DNA damage response (DDR) and coordination of mitotic kinase activation with DNA replication termination. Here we present the first direct evidence of a TIM-ZEB1 axis which control key pathological processes in CRC. We found that loss of TIM expression unleashes ZEB1 which triggers epithelial-to-mesenchymal transition program, cell migration/invasion increase and acquirement of stem-like phenotype of CRC cells. Besides, deranged TIM-ZEB1 axis sets off accumulation of DNA damage and delays DNA damage recovery. It is worth noting that the aggressive and genetically unstable ‘CMS4 - colorectal cancer molecular subtype’ matched with low-TIM expressing CRCs and that patients with low-TIM and high-ZEB1 expression have an adverse outcome. Our results support a critical role for TIM-ZEB1 axis derangement and modulation in determining aggressive disease and poor prognosis in CRC patients.
Project description:Human pluripotent stem cells (hPSCs) tend to acquire chromosomal aberrations in culture, which may increase their tumorigenicity. However, the cellular mechanism(s) underlying these aberrations are largely unknown. Here we show that the DNA replication in aneuploid hPSCs is perturbed, resulting in high prevalence of defects in chromosome condensation and segregation. Global gene expression analyses in aneuploid hPSCs revealed decreased levels of actin cytoskeleton genes and their common transcription factor SRF. Down-regulation of SRF or chemical perturbation of actin cytoskeleton organization in diploid hPSCs resulted in increased replication stress and perturbation of chromosome condensation, recapitulating the findings in aneuploid hPSCs. Altogether, our results revealed that in hPSCs DNA replication stress results in a distinctive defect in chromosome condensation, underlying their ongoing chromosomal instability. Our results shed a new light on the mechanisms leading to ongoing chromosomal instability in hPSCs, and may be relevant to tumor development as well.