Project description:Activation of JAK-STAT3 signaling by leukemia inhibitory factor (LIF) is required for maintaining self-renewal of mouse embryonic stem cells (mESCs). STAT3 perform cell type-specific roles in different cell type, here we revisit the role of STAT3 using mouse female germ stem cell (mFGSCs). We applied CRISPR/Cas9 system to generate Stat3 knockout FGSCs and then observed cell growth inhibition and cell cycle arrest in KO cell line. By combining genome wide ChIP-Seq and RNA-Seq, we identified 5990 STAT3 binding sites and discovered serval genes specific regulated by STAT3 that were involved in stem cell proliferation and female gonad development in FGSCs. In general, we identify key roles of STAT3 for sustains self-renewal and proliferation for FGSCs in this study.
Project description:Activation of JAK-STAT3 signaling by leukemia inhibitory factor (LIF) is required for maintaining self-renewal of mouse embryonic stem cells (mESCs). STAT3 perform cell type-specific roles in different cell type, here we revisit the role of STAT3 using mouse female germ stem cell (mFGSCs). We applied CRISPR/Cas9 system to generate Stat3 knockout FGSCs and then observed cell growth inhibition and cell cycle arrest in KO cell line. By combining genome wide ChIP-Seq and RNA-Seq, we identified 5990 STAT3 binding sites and discovered serval genes specific regulated by STAT3 that were involved in stem cell proliferation and female gonad development in FGSCs. In general, we identify key roles of STAT3 for sustains self-renewal and proliferation for FGSCs in this study.
Project description:Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question whether an earlier ‘naive’ state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support autonomous self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate a homogeneous population of human pluripotent stem cells in which transcription factors associated with the ground state of pluripotency are highly upregulated. Comparison with previously reported naive human ESCs indicates that our kinase inhibitor cocktail captures a novel pluripotent state in humans that closely resembles mouse ESCs. ChIP-seq data from human embryonic stem cells in naive and primed conditions were generated by deep sequencing using Illumina Hi-Seq 2000.
Project description:Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Differentiation of Rex1-GFPd2 ES cells was initiated by withdrawing 2i (Kalkan et al., 2016). Undifferentiated 2i-cells and post-2i withdrawal differentiating populations (16h, 25h-Rex1-High, 25h-Rex1-Low) were subjected to proteomic analysis by Mass Spectrometry.
Project description:Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question whether an earlier ‘naive’ state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support autonomous self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate a homogeneous population of human pluripotent stem cells in which transcription factors associated with the ground state of pluripotency are highly upregulated. Comparison with previously reported naive human ESCs indicates that our kinase inhibitor cocktail captures a novel pluripotent state in humans that closely resembles mouse ESCs. Expression analysis was performed on two groups of human ESC samples: WIBR2 (P12 and P14), WIBR3 (P9) and WIN1 (P10) human ESCs derived in our optimized naive medium (5i/L/A or 6i/L/A, as indicated), and parental WIBR2 and WIBR3 human ESCs in primed human ESC medium.
Project description:Human pluripotent cell lines were derived from blastocyst-stage embryos and propagated in self-renewal conditions that maintain features of naive pluripotency characteristic of mouse embryonic stem cells. Transcriptional activity of HNES1, HNES2 and HNES3 cell lines was assessed with RNA-seq.
Project description:Only rodent embryonic stem (ES) cells can self-renew in the pristine state of pluripotency called the naive or ground state. Human ES (hES) cells self-renew in the so-called primed state of pluripotency, which is an obstacle to research, hindering cost-effective cultivation in media devoid of animal-derived products, genetic stability, and genome engineering. Here we show that forced expression of a hormone-dependent STAT3-ERT2, in combination with LIF and inhibitors of MEK and GSK3beta, allows hES cells to escape from the primed state, and enter a new state designated as TL2i, characterized by the activation of STAT3 target genes, regular passaging by single cell dissociation, and the expression of naive state-specific transcription factors. We used microarrays to analyse the gene expression changes occuring during the adaptation to the naive culture conditions. We then compared our dataset to previously published dataset of mouse ESc and EpiSc, human primed and naive ESc, and human embryos.
Project description:Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question whether an earlier ‘naive’ state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support autonomous self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate a homogeneous population of human pluripotent stem cells in which transcription factors associated with the ground state of pluripotency are highly upregulated. Comparison with previously reported naive human ESCs indicates that our kinase inhibitor cocktail captures a novel pluripotent state in humans that closely resembles mouse ESCs.
Project description:Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question whether an earlier ‘naive’ state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support autonomous self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate a homogeneous population of human pluripotent stem cells in which transcription factors associated with the ground state of pluripotency are highly upregulated. Comparison with previously reported naive human ESCs indicates that our kinase inhibitor cocktail captures a novel pluripotent state in humans that closely resembles mouse ESCs.
Project description:During development, human primordial germ cells (hPGCs) transition through a transcriptional and epigenetic state similar to pre-implantation epiblast cells called naive ground-state pluripotency. Diagnostic transcription factors that define this state include TFAP2C, KLF4, and TFCP2L1, with TFAP2C necessary for both establishment of the naive-like state in hPGC-like cells (hPGCLCs) as well as establishment and self-renewal of naive human embryonic stem cells (hESCs). Here, we show that KLF4 and TFCP2L1 are not required for hPGC specification or establishment of the naive-like state in hPGCLCs. Instead, KLF4 and TFCP2L1 are each required for reversion of primed hESCs to the self-renewing naive ground state. Additionally, TFCP2L1 but not KLF4 function after hPGC specification in the proliferation of the hPGCLC population.