Project description:Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and might be more relevant preclinical models to evaluate effective therapeutic agents. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer models. From 86 unsupervised surgical colon sample collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinosis and 14 metastases. Our histological and molecular characterization of patient tumors, first passage on mice and later passages includes the sequence of key genes involved in CRC (ie APC, KRAS, TP53), CGH array and transcriptomic analysis. This comprehensive characterization demonstrates that our collection recapitulates the clinical situation regarding the histopathological and molecular diversity of colorectal cancers. Moreover, patient tumors and corresponding models are clustering together which gives the opportunity to look for relevant signatures and comparison studies between clinical and preclinical data. Hence, we performed pharmacological monotherapy studies with standard of care for colon cancer (5-FU, oxaliplatin, irinotecan, cetuximab). Through this extensive in vivo analysis, we have compared the molecular profile with the drug sensitivity of each tumor models, and run an equivalent of a cetuximab phase II clinical trial in a preclinical setting. Our results confirm the key role of KRAS mutation in the cetuximab resistance and demonstrate that such collection could bring benefit to evaluate novel targeted therapeutic strategies and potentially help the stratification strategy for cancer patients according to molecular marker. This set correspond to 82 CGH profiles, with 7 samples from patient tumor and 75 samples from mouse xenograft at different passages P0 to P9. All hybridizations are performed with Human CGH 244K Agilent arrays (amadid 014693) in dual color with Human DNA Promega (sex matched) as reference. ID for biosources without an -Px suffix correspond to tumor patients. ID with a suffix correspond to xenograft with 0 for the first passage.
Project description:Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and might be more relevant preclinical models to evaluate effective therapeutic agents. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer models. From 86 unsupervised surgical colon sample collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinosis and 14 metastases. Our histological and molecular characterization of patient tumors, first passage on mice and later passages includes the sequence of key genes involved in CRC (ie APC, KRAS, TP53), CGH array and transcriptomic analysis. This comprehensive characterization demonstrates that our collection recapitulates the clinical situation regarding the histopathological and molecular diversity of colorectal cancers. Moreover, patient tumors and corresponding models are clustering together which gives the opportunity to look for relevant signatures and comparison studies between clinical and preclinical data. Hence, we performed pharmacological monotherapy studies with standard of care for colon cancer (5-FU, oxaliplatin, irinotecan, cetuximab). Through this extensive in vivo analysis, we have compared the molecular profile with the drug sensitivity of each tumor models, and run an equivalent of a cetuximab phase II clinical trial in a preclinical setting. Our results confirm the key role of KRAS mutation in the cetuximab resistance and demonstrate that such collection could bring benefit to evaluate novel targeted therapeutic strategies and potentially help the stratification strategy for cancer patients according to molecular marker. This set correspond to 82 CGH profiles, with 7 samples from patient tumor and 75 samples from mouse xenograft at different passages P0 to P9. All hybridizations are performed with Human CGH 244K Agilent arrays (amadid 014693) in dual color with Human DNA Promega (sex matched) as reference. ID for biosources without an -Px suffix correspond to tumor patients. ID with a suffix correspond to xenograft with 0 for the first passage.
Project description:Prostate cancer discovery and translational research are hampered by a lack of preclinical models which accurately reproduce the biological heterogeneity observed in patients. Accordingly, we have established a bank of transplantable patient-derived prostate tumor xenograft lines, using subrenal capsule grafting of human tumor tissue into immuno-deficient mice. This panel includes the first lines generated from primary prostate cancer tissue, and also new lines from metastatic tissue. Critically, the lines retained salient features of the original patient tumors, including histopathology, clinical marker expression, chromosomal aberration and gene expression profiles. Furthermore, they span major histopathological and molecular subtypes of prostate cancer, capturing diverse inter- and intra-tumoral heterogeneity. Host castration led to the development of castrate-resistant tumors, including the first model of complete neuroendocrine transdifferentiation. This publicly-available resource provides novel tools to advance mechanistic understanding of disease progression and response to therapy, and delivers clinically-relevant model systems for evaluation of preclinical drug efficacy. 3 primary tumors and 21 xenograft tumors
Project description:Prostate cancer discovery and translational research are hampered by a lack of preclinical models which accurately reproduce the biological heterogeneity observed in patients. Accordingly, we have established a bank of transplantable patient-derived prostate tumor xenograft lines, using subrenal capsule grafting of human tumor tissue into immuno-deficient mice. This panel includes the first lines generated from primary prostate cancer tissue, and also new lines from metastatic tissue. Critically, the lines retained salient features of the original patient tumors, including histopathology, clinical marker expression, chromosomal aberration and gene expression profiles. Furthermore, they span major histopathological and molecular subtypes of prostate cancer, capturing diverse inter- and intra-tumoral heterogeneity. Host castration led to the development of castrate-resistant tumors, including the first model of complete neuroendocrine transdifferentiation. This publicly-available resource provides novel tools to advance mechanistic understanding of disease progression and response to therapy, and delivers clinically-relevant model systems for evaluation of preclinical drug efficacy. 3 primary tumors and 22 xenograft tumors
Project description:Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear if drug efficacy data obtained from xenograft models translate into clinically-relevant treatment modalities. In this study, we have generated a panel of 28 patient-derived colorectal cancer explants (PDCCEs), an extension of our previous work, by direct transplantation of human colorectal cancer (CRC) tissues into NOD-SCID mice. A comprehensive histological and molecular evaluation of PDCCEs and their corresponding patient tumor demonstrates that PDCCEs maintain histological features and global biology through multiple passages. Furthermore, we demonstrate that in vivo sensitivity of PDCCEs to oxaliplatin can predict patient outcomes. Our findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and can serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with CRC. 28 human primary colorectal and 37 mouse derived colorectal explant tumors
Project description:We established a large panel of preclinical models of human RCC directly from patients, faithfully reproducing the biological features of the original tumor. RCC tissues were collected for 8 years from 336 patients undergoing surgery, xenografted subcutaneously in nude mice, and serially passaged into new mice up to 13 passages. Tissue samples from the primary tumor and tumors grown in mice through passages were analyzed at the histology, genetic and for of them at the molecular levels for biological tissue stability. We established a large panel of 30 RCC models and 5 them of the clear cell type (clear cell renal cell carcinoma, CCC) were characterized at the mRNA expression level. We used Affymetrix whole genome microarrays to analyze the stability of the PDX models comparing the primary tumor (P0) with the subsequent passages in mice (P1 â¦).
Project description:We established a large panel of preclinical models of human RCC directly from patients, faithfully reproducing the biological features of the original tumor. RCC tissues were collected for 8 years from 336 patients undergoing surgery, xenografted subcutaneously in nude mice, and serially passaged into new mice up to 13 passages. Tissue samples from the primary tumor and tumors grown in mice through passages were analyzed at the histology, genetic and for of them at the molecular levels for biological tissue stability. We established a large panel of 30 RCC models and 5 them of the clear cell type (clear cell renal cell carcinoma, CCC) were characterized at the mRNA expression level.
Project description:Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, non-alcoholic fatty liver disease (NAFLD) is gaining importance. As the disease progresses it can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in NAFLD development, but the molecular mechanisms responsible for disease development remained unresolved. Here, we uncover a strong downregulation of the PI3K-AKT pathway and an upregulation of the MAPK pathway in primary hepatocytes from a preclinical model fed with a Western diet (WD). Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveals a patient-specific variability in basal MET phosphorylation, which correlates with the outcome of patients after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.
Project description:Background: Despite advances in therapeutics, outcomes for hepatocellular carcinoma (HCC) remain poor and there is an urgent need for efficacious systemic therapy. Unfortunately, drugs that are successful in preclinical studies often fail in the clinical setting, and we hypothesize that this is due to functional differences between primary tumors and commonly used preclinical models. In this study, we attempt to answer this question by comparing tumor morphology and gene expression profiles between primary tumors, xenografts and HCC cell lines. Methods: Hep G2 cell lines and tumor cells from patient tumor explants were subcutaneously (ectopically) injected into the flank and orthotopically into liver parenchyma of Mus Musculus SCID mice. The mice were euthanized after two weeks. RNA was extracted from the tumors, and gene expression profiling was performed using the Gene Chip Human Genome U133 Plus 2.0. Principal component analyses (PCA) and construction of dendrograms were conducted using Partek genomics suite. Results: PCA showed that the commonly used HepG2 cell line model and its xenograft counterparts were vastly different from all fresh, primary tumors. Expression profiles of primary tumors were also significantly divergent from their counterpart patient-derived xenograft (PDX) models, regardless of the site of implantation. Xenografts from the same primary tumors were more likely to cluster together regardless of site of implantation, although heat maps showed distinct differences in gene expression profiles between orthotopic and ectopic models. Conclusions: The data presented here challenges the utility of routinely used preclinical models. Models using HepG2 were vastly different from primary tumors and PDXs, suggesting that this is not clinically representative. Surprisingly, site of implantation (orthotopic versus ectopic) resulted in limited impact on gene expression profiles, and in both scenarios xenografts differed significantly from the original primary tumors, challenging the long-held notion that orthotopic PDX model is the gold standard preclinical model for HCC.
Project description:The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease lacking specific therapies. This study reports on the identification, characterization, and immunotherapeutic application of HLA-presented neoantigens specific for the DNAJB1-PRKACA fusion transcript in fibrolamellar hepatocellular carcinoma. DNAJB1-PRKACA-derived HLA class I and HLA class II ligands induce multifunctional cytotoxic CD8+ and T-helper 1 CD4+ T cells, and their cellular processing and presentation in DNAJB1-PRKACA expressing tumor cells is demonstrated by mass spectrometry-based immunopeptidome analysis. Single-cell RNA sequencing further identifies multiple T cell receptors from DNAJB1-PRKACA-specific T cells. Vaccination of a fibrolamellar hepatocellular carcinoma patient, suffering from recurrent short interval disease relapses, with DNAJB1-PRKACA-derived peptides under continued Poly (ADP-ribose) polymerase inhibitor therapy induces multifunctional CD4+ T cells, with an activated T-helper 1 phenotype and high T cell receptor clonality. Vaccine-induced DNAJB1-PRKACA-specific T cell responses persist over time and, in contrast to various previous treatments, are accompanied by durable relapse free survival of the patient for more than 21 months post vaccination. Our preclinical and clinical findings identify the DNAJB1-PRKACA protein as source for immunogenic neoepitopes and corresponding T cell receptors and provide efficacy in a single-patient study of T cell-based immunotherapy specifically targeting this oncogenic fusion.