Project description:Chlamydiae are widely distributed pathogens of human populations, which can lead to serious reproductive and other health problems. In our search for novel antichlamydial metabolites from marine derived-microorganisms, one new (1) and two known (2, 3) dimeric indole derivatives were isolated from the sponge-derived actinomycete Rubrobacter radiotolerans. The chemical structures of these metabolites were elucidated by NMR spectroscopic data as well as CD calculations. All three metabolites suppressed chlamydial growth in a concentration-dependent manner. Among them, compound 1 exhibited the most effective antichlamydial activity with IC50 values of 46.6?~?96.4?µM in the production of infectious progeny. Compounds appeared to target the mid-stage of the chlamydial developmental cycle by interfering with reticular body replication, but not directly inactivating the infectious elementary body.