Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation.
Project description:Within this work we identified and characterized SMc03169 (hhrA) as a new Sinorhizobium meliloti gene product with relevance to biological nitrogen fixation symbiosis with leguminous plants. HhrA belongs to the TetR-family of repressors and its deletion from S. meliloti genome affected considerably gene expression as well as several phenotypic traits. For expression profiling, triplicates of the wild-type Sinorhizobium meliloti 1021 or the SMc03169 (delta hhrA) deletion mutant were grown in GMS liquid medium supplemented with 10 micromolar of luteolin for 4 hours at 30M-BM-:C and 180 rpm, followed by total RNA extraction.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation.