Project description:Chromosome 17q gain is an independent prognostic marker in neuroblastoma, harboring several potential oncogenes including IGF2BP1 and BIRC5. IGF2BP1 was shown to be upregulated in unfavorable neuroblastoma and correlates with poor patient survival. Here, we report that overexpression of IGF2BP1 in a transgenic mouse model induces neuroblastoma with all characteristics known for human neuroblastoma, including MYCN upregulation and genomic aberrations. Furthermore, we demonstrate that genes located at chromosome 17q have an exceptionally high potential as therapeutic targets in addition to a combined inhibition of IGF2BP1 and BIRC5 resulting in additive effects.
Project description:Chromosome 17q gain is an independent prognostic marker in neuroblastoma, harboring several potential oncogenes including IGF2BP1 and BIRC5. IGF2BP1 was shown to be upregulated in unfavorable neuroblastoma and correlates with poor patient survival. Here, we report that overexpression of IGF2BP1 in a transgenic mouse model induces neuroblastoma with all characteristics known for human neuroblastoma, including MYCN upregulation and genomic aberrations. Furthermore, we demonstrate that genes located at chromosome 17q have an exceptionally high potential as therapeutic targets in addition to a combined inhibition of IGF2BP1 and BIRC5 resulting in additive effects.
Project description:Chromosome 17q gain is an independent prognostic marker in neuroblastoma, harboring several potential oncogenes including IGF2BP1 and BIRC5. IGF2BP1 was shown to be upregulated in unfavorable neuroblastoma and correlates with poor patient survival. Here, we report that overexpression of IGF2BP1 in a transgenic mouse model induces neuroblastoma with all characteristics known for human neuroblastoma, including MYCN upregulation and genomic aberrations. Furthermore, we demonstrate that genes located at chromosome 17q have an exceptionally high potential as therapeutic targets in addition to a combined inhibition of IGF2BP1 and BIRC5 resulting in additive effects.
Project description:Chromosome 17q gain is an independent prognostic marker in neuroblastoma, harboring several potential oncogenes including IGF2BP1 and BIRC5. IGF2BP1 was shown to be upregulated in unfavorable neuroblastoma and correlates with poor patient survival. Here, we report that overexpression of IGF2BP1 in a transgenic mouse model induces neuroblastoma with all characteristics known for human neuroblastoma, including MYCN upregulation and genomic aberrations. Furthermore, we demonstrate that genes located at chromosome 17q have an exceptionally high potential as therapeutic targets in addition to a combined inhibition of IGF2BP1 and BIRC5 resulting in additive effects.
Project description:Chromosome 17q gain is an independent prognostic marker in neuroblastoma, harboring several potential oncogenes including IGF2BP1 and BIRC5. IGF2BP1 was shown to be upregulated in unfavorable neuroblastoma and correlates with poor patient survival. Here, we report that overexpression of IGF2BP1 in a transgenic mouse model induces neuroblastoma with all characteristics known for human neuroblastoma, including MYCN upregulation and genomic aberrations. Furthermore, we demonstrate that genes located at chromosome 17q have an exceptionally high potential as therapeutic targets in addition to a combined inhibition of IGF2BP1 and BIRC5 resulting in additive effects.
Project description:Neuroblastoma is an often aggressive childhood cancer with several large chromosomal regions showing recurrent gains or losses. Chromosome 7q is gained in 40-60% of neuroblastomas, but despite being the second most frequent genomic aberration, no oncogenes have been linked to 7q gain. We performed expression profiling and array CGH on 88 primary neuroblastoma tumors to identify a 7q oncogene. We assayed neuroblastoma cell lines and combined bioinformatic analyses on the in vitro and in vivo data.
Project description:Gene expression analysis was performed on 30 Neuroblastomas to identify genes whose transcription is significantly altered by recurrent chromosomal alterations. Genomic copy number losses and gains had been delineated in the tumours using FISH and SNP arrays. We have identified genes significantly altered by 7 recurrent alterations: 1p, 3p, 4p, 10q and 11q loss, 2p and 17q gain, and genes co-amplified and over-expressed as a result of MYCN amplification. Subsequently, correlation of microarray data with survival and expression within rodent neuroblastomas were used to identify genes likely to be involved in the disease progression, and identified a significant excess of differentially expressed genes which correlated with survival within the minimally altered regions on 17q and 4p; Identifying genes whose expression is consistently altered by chromosomal gains or losses is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in-situ hybridisation and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to further define genes likely to be involved in the disease process. Using this approach we identify >1000 genes within 8 recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being significantly enriched for such genes. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators such as survival and comparative gene expression with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers. Experiment Overall Design: Chromosomal gains and losses were delineated in Stage 4 neuroblastomas to facilitate, in combination with expression array data, the identification of genes within regions of gain and loss whose expression is significantly altered by copy number change.
Project description:Dermatofibrosarcoma protuberans (DFSP) is an aggressive spindle cell neoplasm. It is associated with the chromosomal translocation, t(17:22), which fuses the COL1A1 and PDGFbeta genes. We determined the characteristic gene expression profile of DFSP and characterized DNA copy number changes in DFSP by array-based comparative genomic hybridization (array CGH). Fresh frozen and formalin-fixed, paraffin-embedded samples of DFSP were analyzed by array CGH (four cases) and DNA microarray analysis of global gene expression (nine cases). The nine DFSPs were readily distinguished from 27 other diverse soft tissue tumors based on their gene expression patterns. Genes characteristically expressed in the DFSPs included PDGFbeta and its receptor, PDGFRB, APOD, MEOX1, PLA2R, and PRKCA. Array CGH of DNA extracted either from frozen tumor samples or from paraffin blocks yielded equivalent results. Large areas of chromosomes 17q and 22q, bounded by COL1A1 and PDGFbeta, respectively, were amplified in DFSP. Expression of genes in the amplified regions was significantly elevated. Our data shows that: 1) DFSP has a distinctive gene expression profile; 2) array CGH can be applied successfully to frozen or formalin-fixed, paraffin-embedded tumor samples; 3) a characteristic amplification of sequences from chromosomes 17q and 22q, demarcated by the COL1A1 and PDGFbeta genes, respectively, was associated with elevated expression of the amplified genes. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied. Keywords: disease_state_design
Project description:Dermatofibrosarcoma protuberans (DFSP) is an aggressive spindle cell neoplasm. It is associated with the chromosomal translocation, t(17:22), which fuses the COL1A1 and PDGFbeta genes. We determined the characteristic gene expression profile of DFSP and characterized DNA copy number changes in DFSP by array-based comparative genomic hybridization (array CGH). Fresh frozen and formalin-fixed, paraffin-embedded samples of DFSP were analyzed by array CGH (four cases) and DNA microarray analysis of global gene expression (nine cases). The nine DFSPs were readily distinguished from 27 other diverse soft tissue tumors based on their gene expression patterns. Genes characteristically expressed in the DFSPs included PDGFbeta and its receptor, PDGFRB, APOD, MEOX1, PLA2R, and PRKCA. Array CGH of DNA extracted either from frozen tumor samples or from paraffin blocks yielded equivalent results. Large areas of chromosomes 17q and 22q, bounded by COL1A1 and PDGFbeta, respectively, were amplified in DFSP. Expression of genes in the amplified regions was significantly elevated. Our data shows that: 1) DFSP has a distinctive gene expression profile; 2) array CGH can be applied successfully to frozen or formalin-fixed, paraffin-embedded tumor samples; 3) a characteristic amplification of sequences from chromosomes 17q and 22q, demarcated by the COL1A1 and PDGFbeta genes, respectively, was associated with elevated expression of the amplified genes.
Project description:Chromosome 17q gain occurs frequently in MYC-driven tumors including high-risk neuroblastoma. However, the biological consequences of this genetic event remain elusive. Here we show that JMJD6, frequently amplified at the chromosome 17q25 locus, is one of the essential genes to neuroblastoma cells that are engaged in pathways of mitochondrial metabolism, RNA processing and protein homeostasis. JMJD6 cooperates with MYC in cellular transformation and promotes cancer cell proliferation and tumor growth. Mechanistically, JMJD6 physically interacts with RNA-processing machinery to regulate the alternative splicing and protein synthesis. Notably, JMJD6 controls the alternative splicing of glutaminase (GLS), kidney-type glutaminase (KGA) and glutaminase C (GAC), a rate-limiting enzyme of glutaminolysis, and, consequently, the central carbon metabolism in neuroblastoma. Our findings indicate that JMJD6 coordinates with MYC in tumorigenesis by regulating cancer-promoting metabolic programs through an alternative pre-mRNA splicing mechanism.