Project description:In this study, we mapped modification of lysine 4 and lysine 27 of histone H3 genome-wide in a series of mouse embryonic stem cells (mESCs) varying in DNA methylation levels based on knock-out and reconstitution of DNA methyltransferases (DNMTs). We extend previous studies showing cross-talk between DNA methylation and histone modifications by examining a breadth of histone modifications, causal relationships, and direct effects. Our data shows a causal regulation of H3K27me3 at gene promoters as well as H3K27ac and H3K27me3 at tissue-specific enhancers. We also identify isoform differences between DNMT family members. This study provides a comprehensive resource for the study of the complex interplay between DNA methylation and histone modification landscape. Histone ChIP-seq of H3K4me3, H3K27me3, H3K4me1, and H3K27ac were performed on wild-type, Dnmt triple knock-out (Dnmt1/3a/3b; TKO), Dnmt double knock-out (Dnmt3a/3b; DKO), and respective reconstitution mouse embryonic stem cell lines
Project description:In this study, we mapped modification of lysine 4 and lysine 27 of histone H3 genome-wide in a series of mouse embryonic stem cells (mESCs) varying in DNA methylation levels based on knock-out and reconstitution of DNA methyltransferases (DNMTs). We extend previous studies showing cross-talk between DNA methylation and histone modifications by examining a breadth of histone modifications, causal relationships, and direct effects. Our data shows a causal regulation of H3K27me3 at gene promoters as well as H3K27ac and H3K27me3 at tissue-specific enhancers. We also identify isoform differences between DNMT family members. This study provides a comprehensive resource for the study of the complex interplay between DNA methylation and histone modification landscape. RNA-seq performed on wild-type, Dnmt triple knock-out (Dnmt1/3a/3b; TKO), Dnmt double knock-out (Dnmt3a/3b; DKO), and respective reconstitution mouse embryonic stem cell lines
Project description:In this study, we mapped modification of lysine 4 and lysine 27 of histone H3 genome-wide in a series of mouse embryonic stem cells (mESCs) varying in DNA methylation levels based on knock-out and reconstitution of DNA methyltransferases (DNMTs). We extend previous studies showing cross-talk between DNA methylation and histone modifications by examining a breadth of histone modifications, causal relationships, and direct effects. Our data shows a causal regulation of H3K27me3 at gene promoters as well as H3K27ac and H3K27me3 at tissue-specific enhancers. We also identify isoform differences between DNMT family members. This study provides a comprehensive resource for the study of the complex interplay between DNA methylation and histone modification landscape. Reduced representation bisulfite sequencing (RRBS) performed on wild-type, Dnmt triple knock-out (Dnmt1/3a/3b; TKO), Dnmt double knock-out (Dnmt3a/3b; DKO), and respective reconstitution mouse embryonic stem cell lines.
Project description:Cross-talk between DNA methylation and histone modifications drives the establishment of composite epigenetic signatures and is traditionally studied using correlative rather than direct approaches. Here we present sequential ChIP-bisulfite-sequencing (ChIP- BS-seq) as an approach to quantitatively assess DNA methylation patterns associated with chromatin modifications or chromatin-associated factors directly. A chromatin- immunoprecipitation (ChIP)-capturing step is used to obtain a restricted representation of the genome occupied by the epigenetic feature of interest, for which a single-base resolution DNA methylation map is then generated. When applied to H3 lysine 27 tri- methylation (H3K27me3), we found that H3K27me3 and DNA methylation are compatible throughout most of the genome, except for CpG islands, where these two marks are mutually exclusive. Further ChIP-BS-seq-based analysis in Dnmt triple- knock-out (TKO) embryonic stem cells revealed that total loss of CpG methylation is associated with alteration of H3K27me3 levels throughout the genome: H3K27me3 in localized peaks is decreased while broad local enrichments (BLOCs) of H3K27me3 are formed. At an even broader scale, these BLOCs correspond to regions of high DNA methylation in wild-type ES cells, suggesting that DNA methylation prevents H3K27me3 deposition locally and at megabase scale. Our strategy provides an unique way of investigating global interdependencies between DNA methylation and other chromatin features. ChIP (chromatin immunoprecipitation) is followed by bisulfite conversion and deep sequencing to directly assess DNA methylation levels in captured chromatin fragments (ChIP-BS-seq). We used ChIP-BS-seq to study the potential global cross-talk between H3K27me3 and DNA methylation, which are both linked to repression. First, we used capturing of methylated DNA, followed by bisulfite-deep sequencing (MethylCap-BS-seq). Genomic DNA isolated from normal and tumor colon tissues was used for MethylCap-BS-seq as well as for conventional MethylCap-seq experiments. Second, we performed ChIP-BS-seq on H3K27me3, using HCT116 colon carcinoma cells. Third, to further study the relevance of the observations, we generated genome-wide profiles for H3K27me3 and DNA methylation by conventional ChIP-seq and MethylCap-seq, and RNA-seq, respectively. Finally, we performed H3K27me3-ChIP-BS-seq and MethylCap-seq on wild-type mouse ES cells as well as Dnmt-triple-knockout (TKO) mouse ES cells.
Project description:We carry out methyl DNA immunoprecipitation (meDIP), hydroxymethyl DNA immunoprecipitaion (hmeDIP) and H3K27me3 chromatin imminoprecipitation (ChIP) prior to sequencing on the Ion Proton semiconductor sequencing platform to report on the genome-wide epigenetic patterns in J1 mESC and mutant mESCs (hyper active DNMT3b/3l or DNMT1/3a/3b triple knock out) grown under serum conditions or in 2i meadia for 14 days
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain. n = 6 mus musculus wild type samples and n = 6 knock-down experiments have been screened for a currently known mus musculus miRNAs and validated by TaqMan