Project description:The human malaria parasite Plasmodium falciparum employs intricate post-transcriptional regulatory mechanisms in different stages of its life cycle. Despite the importance of post-transcriptional regulation, key elements of these processes, namely RNA binding proteins (RBPs), are poorly characterized. In this study, the RNA binding properties of P. falciparum proteins were characterized including two putative members of the Bruno/CELF family of RBPs (PfCELF1 and PfCELF2), dihydrofolate reductase-thymidylate synthase (PfDHFR-TS), and adenosine deaminase (PfAda).The mRNA targets of these P. falciparum proteins were investigated by ribonomics using DNA microarrays.
Project description:The human malaria parasite Plasmodium falciparum employs intricate post-transcriptional regulatory mechanisms in different stages of its life cycle. Despite the importance of post-transcriptional regulation, key elements of these processes, namely RNA binding proteins (RBPs), are poorly characterized. In this study, the RNA binding properties of P. falciparum proteins were characterized including two putative members of the Bruno/CELF family of RBPs (PfCELF1 and PfCELF2), dihydrofolate reductase-thymidylate synthase (PfDHFR-TS), and adenosine deaminase (PfAda).The mRNA targets of these P. falciparum proteins were investigated by ribonomics using DNA microarrays. Two-condition ribonomic experiment, RBP vs. Mock enrichment of mRNAs. Ribonomic experimental replicates: 4-7 for each RBP, 5 for Mock. One replicate per array.
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405). A 12 chip study using total RNA recovered from six separate wild-type cultures of Plasmodium falciparum 3D7 at gametocyte stage III (three cultures) and stage V (three cultures) and six separate cultures of dalta PfPuf2 mutant at gametocyte stage III (three cultures) and stage V (three cultures). Each chip measures the expression level of 5,367 genes from Plasmodium falciparum 3D7 with 45-60 mer probes with two replicates on final array of 71618 probes.
Project description:Transcriptomic Analysis of Cultured Sporozoites of P. falciparum RNA-seq reads from each of three developmental stages (2 replicates per sample) were mapped to the reference Plasmodium falciparum genome, and gene expression levels were calculated for each sample.
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405).
Project description:This experiment characterizes the transcriptome of the human malaria parasite, P. falciparum at 8 different stages of the intraerythrocytic cycle Examination of polyA selected RNA in Plasmodium falciparum 3D7 strain at 8 different stages using RNA-seq
Project description:New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq was published in 2010 (Otto et al. Molecular Microbiology 2010, April;67 (1), pp. 12-24). Here in collaboration with Manuel Llinas (Princetown University) we are utilising advances in RNA-Seq to gain further understanding of Plasmodium falciparum blood-stage transcription. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/