Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility. Gene expression was measured in whole testis from males aged 62-86 days. Samples include 190 first generation lab-bred male offspring of wild-caught mice from the Mus musculus musculus - M. m. domesticus hybrid zone.
Project description:Analysis of gene expression profiles is an attractive method for discovering how animals respond to environmental challenges in nature. Compared to low altitudes, high altitudes are characterized by reduced partial pressures of oxygen (hypoxia) and cooler ambient temperatures To better understand how mammals cope with high altitudes, we trapped wild house mice (Mus musculus domesticus) from 3 populations in La Paz, Bolivia (3000 - 3600 m) and 3 populations in Lima, Peru (0 – 200 m). Affymetrix GeneChip® Mouse Genome 430 2.0 Arrays were use to measure mRNA abundance in the livers of these mice.
Project description:Analysis of gene expression profiles is an attractive method for discovering how animals respond to environmental challenges in nature. Compared to low altitudes, high altitudes are characterized by reduced partial pressures of oxygen (hypoxia) and cooler ambient temperatures To better understand how mammals cope with high altitudes, we trapped wild house mice (Mus musculus domesticus) from 3 populations in La Paz, Bolivia (3000 - 3600 m) and 3 populations in Lima, Peru (0 M-bM-^@M-^S 200 m). Affymetrix GeneChipM-BM-. Mouse Genome 430 2.0 Arrays were use to measure mRNA abundance in the livers of these mice. Eighteen male house mice were trapped from three different locations (3 mice per location)at high alttiude (La Paz, Bolivia, 3600 m) and from three locations at low altiditude (Lima, Peru, 100 m). Total mRNA was extracted from the livers and used for hybridization of Affymetrix GeneChip Mouse expression set 420.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven M-bM-^@M-^Xhotspots,M-bM-^@M-^Y seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a M-bM-^@M-^XfertileM-bM-^@M-^Y subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. Gene expression was measured in whole testis in males aged 70(M-BM-15) days. Samples include 294 WSB/EiJ x PWD/PhJ F2s, 11 PWD/PhJ x WSB/EiJ F2s, 8 WSB/EiJ, 8 PWD/PhJ, 6 PWD/PhJ x WSB/EiJ F1s and 4 WSB/EiJ x PWD/PhJ F1s.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.