Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome. Biological replicates: 2 for each strain, 2 for control. Grown and harvested in parallel. One replicate per array.
Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.
Project description:We created a multi-species microarray platform, containing probes to the whole genomes of seven different Saccharomyces species, with very dense coverage (one probe every ~500 bp) of the S. cerevisiae genome, including non-S288c regions, mitochondrial and 2 micron circle genomes, plus probes at fairly dense coverage (one probe every ~2,100 bp) for each of the genomes of six other Saccharomyces species: S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. kluyveri and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) using this platform, examining 83 different Saccharomyces strains collected across a wide range of habitats; of these, 69 were widely used commercial S. cerevisiae wine strains, while the remaining 14 were from a wide range of other industrial and natural habitats. Thus, we were able to sample much of the pan-genome space of the Saccharomyces genus. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.
Project description:We study the genetics, including microarray karyotyping using comparative genomic hybridization, to explore global changes in the genomic DNA of seven S. cerevisiae strains related to traditional fermentations of very different sources comparing to the sequenced S. cerevisiae laboratory strain (S288C). Our final goal is to determine the adaptive evolution of properties of biotechnological interest in Saccharomyces yeasts. Many copy number variations (CNVs) were observed, especially in genes associated to subtelomeric regions and transposon elements. Among the fermentation strains, differential CNV was observed in genes related to sugar transport and metabolism. An outstanding example of diverse CNV is the gen PUT1, involved in proline assimilation, which correlated with the adaptation of the strains to the presence of this nitrogen source in the media.
Project description:Investigation of whole genome gene expression level changes in three S. cerevisiae Y55 mutants, compared to the wild-type strain. The UV-induced mutations enable the mutant strains to ferment high-gravity maltose faster than the WT. The mutants analyzed in this study are further described in Baerends, R.J.S., J.L. Qiu, L. Gautier, and A. Brandt. A high-throughput system for screening of fast-fermenting Saccharomyces cerevisiae strains. Manuscript in preparation.
Project description:The budding yeast Saccharomyces cerevisiae is a popular host to be used to produce recombinant proteins. Here we studied three yeast strains with different productivity using the RNA-seq data to elucidate the mechanisms for improving protein production.