Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil. Examination of the methylome of Gemmatirosa kalamazoonenis KBS708 using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Given the facilities for whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now only based on automated prediction. However, errors in terms of gene structure are still frequently reported especially for the correct determination of initiation start codons. Here, we propose a strategy to enrich and detect protein N-termini by mass spectrometry in order to refine genome annotation. After selective protein N-termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPPAc-OSu) as labeling reagent, protein digestion was performed with three proteases in parallel. TMPP-labeled N-terminal-most peptides were further resolved from internal peptides by the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting methodology before analysis with tandem mass spectrometry. We refined the annotation of the genome of a model marine bacterium, Roseobacter denitrificans.
Project description:Single cell genome, DNA methylome, and transcriptome sequencing has been achieved separately. However, to analyze the regulation of RNA expression by genetic and epigenetic factors within an individual cell, it is necessary to analyze these omics simultaneously from the same single cell. Here we developed a single cell triple omics sequencing technique- scTrio-seq, to analyze the genome, DNA methylome, and transcriptome concurrently of a mammalian cell. 6 single human HepG2 cell line cells were sequenced using the newly developed scTrio-seq, other 2 HepG2 cells were sequenced using scRNA-seq and other 2 HepG2 cells were sequenced using scRRBS as technique control. 6 single mouse embryonic stem cells (mESCs) were sequenced using the newly developted scTrio-seq. Meanwhile, two scRNA-seq and two scRRBS were also completed using two mESCs separately. 26 single cells from hepatocellular carcinoma were sequenced using scTrio-seq to analyze the regulation relations between three omics of cancer cells.
Project description:Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.