Project description:Microarray expression profiling of manually sorted m-citirin-labeled layer 4 visual cortex star pyramid neurons from deprived and non-deprived hemispheres. Monocular deprivation by TTX-injection (at P12-13 and again at P13-14), followed by manual sorting of m-Citrin-labeled Layer 4 Visual Cortex Star Pyramid neurons in deprived and non-deprived hemispheres. RNA was extracted using PicoPure RNA Isolation Kit, reverse transcribed, and amplified using a standard T7 IVT protocol (Affymetrix Small Sample Target Labeling Assay Version II).
Project description:Microarray expression profiling of manually sorted m-citirin-labeled layer 4 visual cortex star pyramid neurons from deprived and non-deprived hemispheres.
Project description:Visual deprivation, either in the form of dark rearing (DR) or monocular deprivation (MD) are established paradigms for studying cortical plasticity. We have used miRNA microarray to uncover miRNAs whose expression is altered in primary visual cortex following DR and/or MD.
Project description:Visual deprivation, either in the form of dark rearing (DR) or monocular deprivation (MD) are established paradigms for studying cortical plasticity. We have used miRNA microarray to uncover miRNAs whose expression is altered in primary visual cortex following DR and/or MD. C57BL6 mice were reared in normal light and dark conditions (control) till P28, in complete darkness since birth (DR) till P28, or were grown in normal light/dark conditions from birth till P24 and then subjected to lid suturing of one eye till P28. Mice were euthanized at P28 and their primary visual cortex areas were excised and subjected to RNA isolation. In the case of MD mice only the contralateral to lid suture primary visual cortex was extracted. 100ng of total RNA (tested and quantified using the Agilent Bioanalyzer 2100) were labeled using the Agilent miRNA labeling system and hybridized to Agilent murine miRNA arrays. Microarrays were hybridized overnight at 64 ºC, scanned using an Agilent scanner and extracted with Agilent feature extractor 10.1.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.