Project description:Marine cyanobacteria are thought to be the most sensitive of the phytoplankton groups to copper toxicity, yet little is known of the transcriptional response of marine Synechococcus to copper shock. Global transcriptional response to two levels of copper shock was assayed in both a coastal and an open ocean strain of marine Synechococcus using whole genome expression microarrays. Both strains showed an osmoregulatory-like response, perhaps as a result of increasing membrane permeability. This could have implications for marine carbon cycling if copper shock leads to dissolved organic carbon leakage in Synechococcus. The two strains additionally showed a reduction in photosynthetic gene transcripts. Contrastingly, the open ocean strain showed a typical stress response whereas the coastal strain exhibited a more specific oxidative or heavy metal type response. In addition, the coastal strain activated more regulatory elements and transporters, many of which are not conserved in other marine Synechococcus strains and may have been acquired by horizontal gene transfer. Thus, tolerance to copper shock in some marine Synechococcus may in part be a result of an increased ability to sense and respond in a more specialized manner.
Project description:Marine cyanobacteria are thought to be the most sensitive of the phytoplankton groups to copper toxicity, yet little is known of the transcriptional response of marine Synechococcus to copper shock. Global transcriptional response to two levels of copper shock was assayed in both a coastal and an open ocean strain of marine Synechococcus using whole genome expression microarrays. Both strains showed an osmoregulatory-like response, perhaps as a result of increasing membrane permeability. This could have implications for marine carbon cycling if copper shock leads to dissolved organic carbon leakage in Synechococcus. The two strains additionally showed a reduction in photosynthetic gene transcripts. Contrastingly, the open ocean strain showed a typical stress response whereas the coastal strain exhibited a more specific oxidative or heavy metal type response. In addition, the coastal strain activated more regulatory elements and transporters, many of which are not conserved in other marine Synechococcus strains and may have been acquired by horizontal gene transfer. Thus, tolerance to copper shock in some marine Synechococcus may in part be a result of an increased ability to sense and respond in a more specialized manner. In this series four conditions have been analyzed. These are moderate copper shock for Synechococcus sp. WH8102 and CC9311 (pCu 11.1 and pCu 10.1, respectively), and high copper shock for WH8102 and CC9311 (pCu 10.1 and pCu 9.1, respectively). For each slide, an experimental RNA sample was labeled with Cy3 or Cy5 and was hybridized with a reference RNA from a non-copper-shocked sample labeled with the other Cy dye. There are six or eight slides per condition, each with two biological replicates. There are three or four technical replicates for each biological replicate including at least one flip-dye comparison. Each slide contains six replicate spots per gene.
Project description:In this study, we explored the use of BONCAT in Synechococcus sp. – a globally important cyanobacteria. We characterized the growth and microscopically quantified HPG uptake under a range of HPG concentrations in marine Synechococcus sp. Further, we examined changes in protein expression of Synechococcus sp. grown under normal and nitrate-stressed conditions relative to a non-HPG control.
Project description:Marine Synechococcus, together with Prochlorococcus, contribute to a significant proportion of the primary production on Earth. The spatial distribution of these two groups of marine picocyanobacteria depends on different factors such as nutrients availability or temperature. Some Synechococcus ecotypes thrive in mesotrophic and moderately oligotrophic waters, where they exploit both oxidized and reduced forms of nitrogen. Here, we present a comprehensive study, which includes transcriptomic and proteomic analyses of the response of Synechococcus sp. strain WH7803 to nanomolar concentrations of nitrate, compared to ammonium or nitrogen starvation. We found that Synechococcus has a specific response to nanomolar nitrate concentration that differs to the response showed under nitrogen starvation or the presence of standard concentrations of either ammonium or nitrate. This fact suggests that the particular response to the uptake of nanomolar concentration of nitrate could be an evolutionary advantage for marine Synechococcus against Prochlorococcus in the natural field.
Project description:Proteins secreted by marine cyanobacterium Synechococcus under phosphorus stress is largely uncharacterized. This dataset characterizes the exoproteins for both an open ocean (WH8102) and coastal (WH5701) Synechococcus strain and were collected as part of the study "Dissolved organic phosphorus bond-class utilization by Synechococcus". Study Abstract: Dissolved organic phosphorus (DOP) contains compounds with phosphoester (P-O-C), phosphoanhydride (P-O-P), and phosphorus-carbon (P-C) bonds. Despite DOP’s importance as a nutritional source for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by cultures of an open ocean and a coastal ocean Synechococcus strain. Both strains exhibited comparable growth rates when provided phosphate, short-chain and long-chain polyphosphate (P-O-P), adenosine 5’-triphosphate (P-O-C and P-O-P), and glucose-6-phosphate (P-O-C) as the phosphorus source. However, growth rates on phosphomonoester adenosine 5’-monophosphate (P-O-C) and phosphodiester bis(4-methylumbelliferyl) phosphate (C-O-P-O-C) varied between strains, and neither strain grew on selected phosphonates. Consistent with the growth measurements, both strains preferentially hydrolyzed 3-polyphosphate, followed by adenosine 5’-triphosphate, and then adenosine 5’-monophosphate. The strains’ exoproteome contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5’-triphosphate under phosphate deficiency, suggests active mineralization of short-chain polyphosphate by Synechococcus’ exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity towards short-chain polyphosphate, with varying affinities between the two strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition, thereby expanding our understanding of microbially-mediated DOP cycling in marine ecosystems.
Project description:Exoproteomes generated from Synechococcus sp. WH7803 and Prochlorococcus sp. MIT9313 cultures grown under different nutrient, light and temperature conditions. The aim was to see how the production of the pili were affected. Exoproteomes of marine Synechococcus under different nutrient limitations analysed by LC-MS/MS
Project description:Exoproteomes generated from Synechococcus sp. WH7803 and Prochlorococcus sp. MIT9313 cultures grown under different nutrient, light and temperature conditions. The aim was to see how the production of the pili were affected. Exoproteomes of marine Synechococcus under different nutrient regimes analysed by LC-MS/MS
Project description:Exoproteomes generated from Synechococcus sp. WH7803 and Prochlorococcus sp. MIT9313 cultures grown under different nutrient, light and temperature conditions. The aim was to see how the production of the pili were affected. Exoproteomes of marine Synechococcus under different light regimes analysed by LC-MS/MS
Project description:Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, “species” also known as clades. We compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co-occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe-limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbor stress-tolerant subgroups, and thus fitness tradeoffs may govern Cu-tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations.