Project description:We report the transcriptomic information of wild type (Lab-WT) A.baumannii 98-37-09 and A1S_3277 transposon mutant during the growth in human serum with 0.15 µg/mL levofloxacin
Project description:We intended to investigate effects of mmu-miR-15a-3p on gene expression in mice We used microarrays to compare gene expression in mouse B/CMBA.Ov cell lines transfected with mmu-miR-15a-3p and negative control mimic
Project description:MicroRNAs are important regulators of gene expression and associated with stress-related psychiatric disorders. We report that exposing mice to chronic stress led to a specific increase in microRNA-15a levels in the amygdala-Ago2 complex, and a concomitant reduction in the levels of its predicted target, FKBP51, which is implicated in stress-related psychiatric disorders. Reciprocally, mice expressing reduced levels of amygdalar microRNA-15a following exposure to chronic stress exhibited increased anxiety-like behaviors. Here, we performed small RNA Sequencing of mouse basolateral amygdala after miR15a knockdown using injection of a miR-15a sponge virus or control sponge virus.
Project description:While microRNAs (miRs) have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T cell activation are less clear. We found reduced levels of miR-15a/16 at 3-18 h post-T cell receptor (TCR) stimulation, suggesting a role in shaping T cell activation. An inducible miR15a/16 transgenic mouse model was developed to determine how elevating miR-15a/16 levels during early stages of activation would affect T cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycyclin (DOX) induced expression of miR-15a/16 from 0-18 h post-TCR stimulation decreased ex vivo proliferation as well as in vivo antigen-specific proliferation. Bioinformatic and proteomic approaches were combined to identify MEK1 as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased MEK1 containing the 3’-UTR target nucleotide sequence (UGCUGCUA) but did not decrease MEK1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules ERK1/2 and Elk1 were decreased with DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T cell activation to facilitate increased MEK1 and ERK1, and this promotes sustained MEK1-ERK1/2-Elk1 signaling required for optimal proliferation.
Project description:Analysis of mouse chondrocytes lacking the microRNA-140. MicroRNAs are genomically encoded small RNAs to regulate the gene expression. miR-140 shows high expression in cartilage. Results provide insight into the molecular mechanisms underlying miR-140 function in chondrocytes. Keywords: Expression profiling by array
Project description:MicroRNAs (miRNAs) are short noncoding RNA molecules regulating the expression of mRNAs. Target identification of miRNAs is computationally difficult due to the relatively low homology between miRNAs and their targets. We present here an experimental approach to target identification where the cartilage-specific miR-140 was overexpressed and silenced in cells it is normally expressed in separate experiments. Expression of mRNAs was profiled in both experiments and the intersection of mRNAs repressed by miR-140 overexpression and derepressed by silencing of miR-140 was identified. The intersection contained only 49 genes, although both treatments affected the accumulation of hundreds of mRNAs. These 49 genes showed a very strong enrichment for the miR-140 seed sequence implying that the approach is efficient and specific. 21 of these 49 genes were predicted to be direct targets based on the presence of the seed sequence. Interestingly, none of these were predicted by the published target prediction methods we used. One of the potential target mRNAs, Cxcl12, was experimentally validated by Northern blot analysis and a luciferase reporter assay.