Project description:We report that Sall4 and Myocd empower direct cardiac reprogramming from adult cardiac fibroblasts after myocardial infarction (MICFs). To examine the gene expression of induced cardiomyocytes (iCMs) on the genome-wide scale, we performed RNA-sequencing of MICFs and iCMs induced by GMTMS (our cocktails) or GMTMM (cocktails reported by Weda et al). We found significant changes in the global gene expression profiles of MICFs after GMTMS or GMTMM overexpression. Compared to MICFs, 1318 genes were significantly up-regulated and 1302 genes were significantly down-regulated in GMTMS-induced iCMs, in which high expression of many cardiac genes and concomitant suppression of fibroblast genes were observed. Go analysis revealed that many cardiac-related clusters were enriched in iCMs as well. These results demonstrate a cardiac-like phenotype reprogrammed from MICFs by GMTMS.
Project description:Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. Mouse embryonic fibroblasts were treated with different combinations of transcription factors to drive transdifferentiation to induced cardiomyocytes (iCMs). Putative iCMs were enriched by zeocin selection. Zeocin resistance was conferred to iCMs via the TroponinT-GCaMP5-Zeo lentiviral reporter.
Project description:Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes, iCMs) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CM and iCM are still unknown. Here we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status while iCMs exhibit maturation status that more resemble adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis while iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches.
Project description:Background: Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as one of the promising strategies to remuscularize the injured myocardium. Yet, it is still insufficient to generate functional induced cardiomyocytes (iCMs) from human fibroblasts using conventional reprogramming cocktails, such as our previously published combination consisting of MEF2C, GATA4, TBX5 and microRNA miR-133 (MGT133). Results: To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human iCMs and functional cardiomyocytes (CMs). We identified T-box transcription factor TBX20 as the top CM gene that is unable to be activated by MGT133. TBX20 is required for normal heart development and cardiac function in adult CMs but its role on cardiac reprogramming remains undefined. Here, we found that transduction of MGT133+TBX20 in human cardiac fibroblasts resulted in enhanced reprogramming featured with significantly activated contractility gene programs and signatures more similar to ventricular CMs. Human iCMs produced with MGT133+TBX20 more frequently demonstrated beating and calcium oscillation in co-culture with pluripotent stem cell derived CMs. More mitochondria and higher mitochondrial respiration were also detected in iCMs after TBX20 overexpression. Mechanistically, comprehensive transcriptomic, chromatin occupancy and epigenomic integration revealed that TBX20 localized to the cis-regulatory enhancers of under-expressed cardiac genes, such as MYBPC3, MYH7 and MYL4, to activate gene expression via strengthening the occupancy and co-occupancy of transcription factors. Furthermore, we identified TBX20-regulated enhancers and confirmed the synergistic effect of MGT and TBX20 on enhancer activation. Conclusions: TBX20 promotes cardiac cell fate conversion via direct activating cardiac enhancers. Human iCMs generated with TBX20 showed enhanced cardiac function in terms of contractility and mitochondrial respiration.
Project description:Background: Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as one of the promising strategies to remuscularize the injured myocardium. Yet, it is still insufficient to generate functional induced cardiomyocytes (iCMs) from human fibroblasts using conventional reprogramming cocktails, such as our previously published combination consisting of MEF2C, GATA4, TBX5 and microRNA miR-133 (MGT133). Results: To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human iCMs and functional cardiomyocytes (CMs). We identified T-box transcription factor TBX20 as the top CM gene that is unable to be activated by MGT133. TBX20 is required for normal heart development and cardiac function in adult CMs but its role on cardiac reprogramming remains undefined. Here, we found that transduction of MGT133+TBX20 in human cardiac fibroblasts resulted in enhanced reprogramming featured with significantly activated contractility gene programs and signatures more similar to ventricular CMs. Human iCMs produced with MGT133+TBX20 more frequently demonstrated beating and calcium oscillation in co-culture with pluripotent stem cell derived CMs. More mitochondria and higher mitochondrial respiration were also detected in iCMs after TBX20 overexpression. Mechanistically, comprehensive transcriptomic, chromatin occupancy and epigenomic integration revealed that TBX20 localized to the cis-regulatory enhancers of under-expressed cardiac genes, such as MYBPC3, MYH7 and MYL4, to activate gene expression via strengthening the occupancy and co-occupancy of transcription factors. Furthermore, we identified TBX20-regulated enhancers and confirmed the synergistic effect of MGT and TBX20 on enhancer activation. Conclusions: TBX20 promotes cardiac cell fate conversion via direct activating cardiac enhancers. Human iCMs generated with TBX20 showed enhanced cardiac function in terms of contractility and mitochondrial respiration.
Project description:Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where Mef2c acts as a pioneer factor with Gata4 and Tbx5 (GT). However, generation of functional and mature iCMs is inefficient and molecular mechanisms underlying this process remains largely unknown. Here we found that transduction of transcriptionally activated Mef2c via fusion of the powerful MyoD transactivation domain increased generation of beating iCMs by 30-fold in combination with GT.
Project description:Although several studies have uncovered abnormal signaling pathways in RASopathy disorders, little is known about the alterations of the cardiac transcriptome induced by Noonan syndrome (NS) mutations. Hence, to gain insights into the transcriptional alterations induced by the NS-associated RAF1S257L/+ mutation in human iPSC-derived cardiomyocytes, we performed quantitative transcriptome profiling by RNA-sequencing. Since we have found that inhibition of ERK5 and MEK1/2 pathways could normalized hypertrophy and myofibrillar disarray in mutant cardiomyocytes, we also aimed at identifying gene transcriptional profiles that were specifically affected by either MEK5-ERK5 or MEK1/2-ERK1/2 activation in RAF1S257L/+ iCMs.