Project description:Understanding the mechanisms underlying the establishment of invasive plants is critical in community ecology. According to a widely accepted theory, plant-soil-microbe interactions mediate the effects of invasive plants on native species, thereby affecting invasion success. However, the roles and molecular mechanisms associated with such microbes remain elusive. Using high throughput sequencing and a functional gene microarray, we found that soil taxonomic and functional microbial communities in plots dominated by Ageratina adenophora developed to benefit the invasive plant. There were increases in nitrogen-fixing bacteria and labile carbon degraders, as well as soil-borne pathogens in bulk soil, which potentially suppressed native plant growth. Meanwhile, there was an increase of microbial antagonism in the A. adenophora rhizosphere, which could inhibit pathogenicity against plant invader. These results suggest that the invasive plant A. adenophora establishes a self-reinforcing soil environment by changing the soil microbial community. It could be defined as a ‘bodyguard/mercenary army’ strategy for invasive plants, which has important insights for the mitigation of plant invasion.
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.
Project description:Soil water repellency (SWR) (i.e. soil hydrophobicity or decreased soil wettability) is a major cause of global soil degradation and a key agricultural concern. This metabolomics data will support the larger effort measuring soil water repellency and soil aggregate formation caused by microbial community composition through a combination of the standard drop penetration test, transmission electron microscopy characterization and physico-chemical analyses of soil aggregates at 6 timepoints. Model soils created from clay/sand mixtures as described in Kallenbach et al. (2016, Nature Communications) with sterile, ground pine litter as a carbon/nitrogen source were inoculated with 15 different microbial communities known to have significantly different compositions based on 16S rRNA sequencing. This data will allow assessment of the direct influence of microbial community composition on soil water repellency and soil aggregate stability, which are main causes of soil degradation.
The work (proposal:https://doi.org/10.46936/10.25585/60001346) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil. Examination of the methylome of Gemmatirosa kalamazoonenis KBS708 using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS