Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. deep sequencing of small RNAs from parthenogenetic Acyrthosiphon pisum
Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. An array including the 155 aphid microRNAs was designed in order to follow the expression of aphid microRNAs during the modification of reproduction mode of the pea aphid
Project description:An analysis of the impact of infection by Buchnera aphidicola APS (isolated from Acyrthosiphon pisum strain LL01) on gene expression of S2 cells. All comparisons are made against a pool of RNA from S2 cells not exposed to B. aphidicola. B. aphidicola freshly isolated from the aphids, and data are collected at 1, 6 and 24 hours after exposure of S2 cells to the B. aphidicola preparation. Keywords: time course, Buchnera aphidicola APS, aphids, Drosophila melanogaster S2 cells