Project description:In summary, we present a systematic in silico screen for the conserved non-coding RNA structures by comparing the P. falciparum genome with seven other malaria species and describe 668 candidate RNA secondary structures. By combining microarray and northern data, we provide evidence for expression of 28 novel ncRNA candidates at the transcript level in the blood stages of P. falciparum, a subset of which show intra-erythrocytic stage-specificity for expression. Few of the expressed novel candidates appear to have similarity to functionally known ncRNAs characterised to-date. The ncRNA candidates that show a narrow phylogenetic distribution, such as the internal var-associated ncRNAs, may be involved in species-specific function. At present, we can not assign specific function to these novel ncRNAs, however, our study highlights the abundance of these novel ncRNA structures in P. falciparum and suggests important roles for these ncRNAs in cellular processes. Although the control of gene expression by mechanisms such as epigenetics, post-transcriptional gene regulation and transcript stability has been recently shown in Plasmodium, all the key cellular players in such types of non-conventional gene regulation in Plasmodium are yet to be identified. Taking cues from the functionally characterized components of the higher eukaryotic non-coding RNA populations, it is tempting to speculate that ncRNAs may, at least in part, be instrumental in gene regulation in P. falciparum. However, in contrast to the higher eukaryotes, the absence of a conventional RNAi pathway and its associated components in malaria suggests that these malaria-specific novel ncRNAs, where functional, must exert their role using novel pathways or mechanisms, possibly unique to malaria. It remains to be determined what fraction of the ncRNAs described here are involved in modulating expression of one or more genes or gene families in malaria and also the precise cellular function for them not only in the blood stages but also in the other life-cycle stages of P. falciparum.
Project description:During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes – sexual stage precursor cells – likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the blood stream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and ~30 hours post invasion and mature gametocytes after around 7 days post invasion.
Project description:The goal of this phase 1/2a sporozoite challenge trial (NCT01883609) was to evaluate novel malaria vaccination regimens of the GSK pre-erythrocytic RTS,S/AS01B vaccine alone and concomitantly same-site administered with the viral vectors ChAd63 & MVA encoding the liver stage antigen construct ME-TRAP. Four vaccine groups were studied and received three vaccinations at a monthly interval. All subjects then underwent controlled human malaria infection (CHMI) 11 weeks after first vaccine administration.
Project description:During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes M-bM-^@M-^S sexual stage precursor cells M-bM-^@M-^S likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the blood stream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and ~30 hours post invasion and mature gametocytes after around 7 days post invasion. We used 164/TdTom, a transgenic parasite line expressing a red fluorescent protein reporter under a gametocyte-specific promoter to generate schizont samples. Schizonts were subsequently isolated from both the fluorescent and non-fluorescent population by FACS and prepared for microarray analysis. Two biological replicates were produced for both the fluorescent and the non-fluorescent samples.
Project description:Artemisinin and its derivatives exert the potent, antimalarial action, although the mechanisms by which these drugs inhibit the growth of mararia parasites is not fully understood. We used microarrays to detail the global gene expression change in early erythrocytic P. falciparum, and identified molecules that may contribute to the activity of dihydroartemisinin.
Project description:Investigations on the fundamental of malaria parasite biology, such as invasion, growth cycle, metabolism and cell signalling have uncovered a number of potential antimalarial drug targets, including choline kinase, a key enzyme involved in the synthesis of phosphatidylcholine, an important component in parasite membrane compartment. The effect on gene expression of Plasmodium falciparum K1 strain following 72 hours exposure to 2 μM (IC50 concentration) of the choline kinase inhibitor, hexadecyltrimethylammonium bromide (HDTAB) was evaluated by DNA microarray analysis. Genes important in P. falciparum intra-erythrocytic life cycle, such as invasion, cytoadherance and growth were among those affected by at least 2-fold changes in their expression levels compared with non HDTAB-treated control.
Project description:Objectives: Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response yet, their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. Methods: The transcriptional and functional profile of monocytes were examined in controlled human malaria infection with P. falciparum blood-stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA-sequencing and flow cytometry at peak-infection and compared to pre-infection or at convalescence in acute malaria. Results: In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response, cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation, and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change was greater in children. Conclusions: Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggest monocyte phenotypes may change with age or exposure.
Project description:Most malaria drug development focuses on parasite stages detected in red-blood cells even though to achieve eradication next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4,000 commercially available compounds with previously demonstrated blood stage activity (IC50 < 1 µM), and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. Our orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 mg/kg) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.