Project description:Objective: Procyanidins are polyphenolic bioactive compounds that exert beneficial effects against obesity and its related diseases. The aim of this study was to evaluate whether the supplementation with low doses of a grape seed procyanidin extract (GSPE) to dams during pre and postnatal periods has biological effects on their offspring at youth. Design: The metabolic imprinting effect of GSPE was evaluated in 30 days-old male offspring of four groups of rats that were fed either a standard diet (STD) or a high-fat diet (HFD) and supplemented with either GSPE at 25 mg per kg of body weight/day or vehicle during pregnancy and lactation. Results: A significant increase in the adiposity index and in the weight of all the white adipose tissue depots studied (retroperitoneal â??RWAT-, mesenteric â??MWAT-, epididymal â??EWAT- and inguinal â??IWAT-) was observed in offspring of dams fed with a HFD and treated with GSPE (HFT group), compared to the offspring of dams fed with the same diet and that do not received procyanidins (HF group). HFT animals also showed a higher number of cells in the EWAT, a sharply decrease of the circulating levels of monocyte chemoattractant protein-1 (MCP-1) as well as a moderate, but significant, decrease of plasma glycerol levels. The transcriptomic analysis performed in the EWAT showed 238 genes differentially expressed between HF and HFT animals, covering an entire range of processes related with the immune function and the inflammatory response (the metabolic pathway mainly reflected in the EWAT), adipose tissue remodeling and function, lipid and glucose homeostasis and metabolism of methyl groups. Conclusion: GSPE treatment to dams fed a HFD during pregnancy and lactation increases adiposity, decreases the circulating levels of MCP-1 and modulates the expression of key genes involved in the adipose tissue metabolism of their offspring. The microarray study was performed with the EWAT RNA samples of rats from the HF and the HFT groups (n=8 animals each).
Project description:Objective: Procyanidins are polyphenolic bioactive compounds that exert beneficial effects against obesity and its related diseases. The aim of this study was to evaluate whether the supplementation with low doses of a grape seed procyanidin extract (GSPE) to dams during pre and postnatal periods has biological effects on their offspring at youth. Design: The metabolic imprinting effect of GSPE was evaluated in 30 days-old male offspring of four groups of rats that were fed either a standard diet (STD) or a high-fat diet (HFD) and supplemented with either GSPE at 25 mg per kg of body weight/day or vehicle during pregnancy and lactation. Results: A significant increase in the adiposity index and in the weight of all the white adipose tissue depots studied (retroperitoneal –RWAT-, mesenteric –MWAT-, epididymal –EWAT- and inguinal –IWAT-) was observed in offspring of dams fed with a HFD and treated with GSPE (HFT group), compared to the offspring of dams fed with the same diet and that do not received procyanidins (HF group). HFT animals also showed a higher number of cells in the EWAT, a sharply decrease of the circulating levels of monocyte chemoattractant protein-1 (MCP-1) as well as a moderate, but significant, decrease of plasma glycerol levels. The transcriptomic analysis performed in the EWAT showed 238 genes differentially expressed between HF and HFT animals, covering an entire range of processes related with the immune function and the inflammatory response (the metabolic pathway mainly reflected in the EWAT), adipose tissue remodeling and function, lipid and glucose homeostasis and metabolism of methyl groups. Conclusion: GSPE treatment to dams fed a HFD during pregnancy and lactation increases adiposity, decreases the circulating levels of MCP-1 and modulates the expression of key genes involved in the adipose tissue metabolism of their offspring.
Project description:16 rats were mated and the dams continued pregnancy (controls) or were subsequently caloric restricted (CR) for 20% during days 1-12. Control female/male offspring continued normal lactation, while offspring of CR-treated dams received either normal lactation (CR group) or received during lactation until PN21 leptin supplementation. Leptin treatment of offspring during lactation after caloric restriction of dams during pregnancy reverts CR-induced dysfunction.
Project description:We established a new minimal congenic rat strain containing only a single gene, Zbtb16, from a metabolic syndrome model, the polydactylous rat (PD/Cub) strain, within the spontaneously hypertensive rat (SHR) strain genomic background. 16-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet during pregnancy and 4 weeks of lactation (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during the same period. We have compared the transcriptome profile (GeneChip Rat Gene 2.1 ST Array Strip) in liver, brown and white adipose tissue in adult male offspring of SHR and SHR-Zbtb16 rat dams.
Project description:The aim of the study was to analyze the impact of choline intake during pregnancy and/or lactation on histological alternation and gene expression profile in the liver of NAFLD dam progeny. We hypothesized that offspring of mothers suffering from non-alcoholic fatty liver (NAFLD) is more prone to develop fatty liver, because of suboptimal intrauterine environment. The performed analyses included histological examination of liver tissue obtained from 24-day-old male rats, which were offspring of dams with fatty liver: provided with proper choline amount during pregnancy and lactation (NN), fed a choline-deficient diet during these both periods (DD), deprived with choline only during pregnancy (DN) or only during lactation (ND). The global gene expression profile was analyzed by using microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip).
Project description:Adult female Wistar rats (about 220g) obtained from a breeding colony were mated and fed either a protein sufficient (PS) or protein restricted (PR) diet (n = 6 per dietary group) during F0 pregnancy which provided an increase in energy of approximately 25% compared to the diet fed to the breeding colony (2018S). During lactation dams were fed AIN93G and litters were standardisied to 8 offspring within 24 hours of birth with a bias towards females. Offpsring were weaned onto AIN93M at postnatal day 28 and F1 and F2 females were mated on postnatal day 70 (n = 6 per F0 dietary group). F1 and F2 dams were fed the PS diet during pregnancy and AIN93G during lactation. Offspring were weaned onto AIN93M. On postnatal day 70 unmated female offspring were fasted for 12 hours then sacrificed for hepatic transcritpome analysis by microarray. Expression of 1,684 genes differed by at least 2 fold between adult female F1 offspring of F0 dams from both dietary groups. 1680 genes were altered in F2 offspring and 2,065 genes altered in F3 offspring. Expression of 113 genes was altered in all three generations. Of these, 47% showed directionally opposite differences between generations. Gene ontology analysis revealed clear differences in the pathways altered in each generation. F1 and F2 offspring of F0 dams fed a PR diet showed impaired fasting glucose homeostasis. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression was elevated in F1 and F2 offspring from F0 PR dams, but decreased in F3, compared to PS offspring
Project description:Maternal exposures during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. We investigated whether feeding pregnant rats a high fat (HF) or ethinyl-estradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. Here we show that mammary tumorigenesis is higher in daughters and granddaughters of HF rat dams and in daughters, granddaughters and great-granddaughters of EE2 rat dams. Outcross experiments indicate that increased mammary cancer risk is transmitted to HF granddaughters equally through the female or male germlines, but it is only transmitted to EE2 granddaughters through the female germline. The effects of maternal EE2 exposure on offspring's mammary cancer risk are associated with alternations in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and estrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through non-genetic means We examined the whole genome methylation status of both control and EE2-supplemented diet rats in three consecutive generations
Project description:Maternal exposures during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. We investigated whether feeding pregnant rats a high fat (HF) or ethinyl-estradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. Here we show that mammary tumorigenesis is higher in daughters and granddaughters of HF rat dams and in daughters, granddaughters and great-granddaughters of EE2 rat dams. Outcross experiments indicate that increased mammary cancer risk is transmitted to HF granddaughters equally through the female or male germlines, but it is only transmitted to EE2 granddaughters through the female germline. The effects of maternal EE2 exposure on offspring's mammary cancer risk are associated with alternations in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and estrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through non-genetic means
Project description:The goal was to study the long term metabolic programming effects of exposure of offspring to a dam eating 60% high fat diet during the lactation period only. We previously showed that offspring from dams given lactational high fat diet (HFD) are predisposed to obesity, glucose intolerance and inflammation. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21 day lactation period. Starting at weaning offspring were fed normal fat diet until 3 months of age at which point a subset were challenged with an additional HFD stressor. Lactational HFD fed male offspring developed hepatic insulin resistance. Postweaning HFD challenge led male offspring progressing to NAFLD with more severe outcomes in the lactational HFD challenged offspring.
Project description:Maternal obesity can program metabolic syndrome in offspring but the mechanisms are not well characterized. Moreover, the consequences of maternal overnutrition in the absence of frank obesity remain poorly understood. This study aimed to determine the effects of maternal consumption of a high fat-sucrose diet on the skeletal muscle metabolic and transcriptional profiles of adult offspring. Female Sprague Dawley rats were fed either a diet rich in saturated fat and sucrose (HFD, 23.5% fat, 20% sucrose wt/wt) or a standard chow diet (NFD, 7% fat, 10% sucrose w/w) for the 3 weeks prior to mating and throughout pregnancy and lactation. Although maternal weights were not different between groups at conception or weaning, HFD dams were ~22% heavier than chow fed dams from mid-pregnancy until 4 days post-partum. Adult male offspring of HFD dams were not heavier than controls but demonstrated features of insulin resistance including elevated plasma insulin concentration (+40%, P<0.05). Next Generation mRNA Sequencing was used to identify differentially expressed genes in the soleus muscle of offspring, and Gene Set Enrichment Analysis (GSEA) to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 pathways enriched for up-regulated genes, including cytokine signaling (P<0.005), starch and sucrose metabolism (P<0.017), and inflammatory response (P<0.024). A further 8 pathways were significantly enriched for down-regulated genes including oxidative phosphorylation (P<0.004) and electron transport (P<0.022). Western blots confirmed a ~60% reduction in the phosphorylation of the insulin signaling protein Akt (P<0.05) and ~70% reduction in mitochondrial complexes II (P<0.05) and V expression (P<0.05). On a normal diet, offspring of HFD dams developed an insulin resistant phenotype, with transcriptional evidence of muscle cytokine activation, inflammation and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of pre-pregnancy obesity can promote metabolic dysregulation and predispose offspring to type 2 diabetes. Messenger RNA profile of skeletal muscle of male offspring from female Sprague Dawley rats fed either a diet rich in saturated fat and sucrose (HFD, 23.5% fat, 20% sucrose wt/wt) or a standard chow diet (NFD, 7% fat, 10% sucrose w/w) for the 3 weeks prior to mating and throughout pregnancy and lactation. There were 5 HFD samples compared to 6 NFD control samples.