Project description:High throughput “omics technologies” such as transcriptomics and proteomics provide insights into the metabolic potential of an organism and have been used to understand the genetic and the central carbon metabolism mechanisms for the production of desired end products in various cellulolytic clostridia cultured on different substrates In this study, C. termitidis was cultured on lignocellulose derived simple and complex sugars: cellobiose, xylose, xylan and ?–cellulose as sole carbon sources. 2D HPLC-MS/MS quantitative Proteomic profiles and RNA seq transcriptome profiles (next generation sequencing to identify and quantify RNA in biological samples) were analyzed to identify the genes involved in substrate degradation, cellodextrin transport and end product synthesis related genes Identification of these genes is important in understanding the metabolic networks of C. termitidis and could be valuable engineering targets for improving biomass to biofuel production. Closridium termitidis was cultured on 2g/L each of ?-cellulose, xylan, cellobiose and xylose. Samples were collected from the exponential phase. 2 replicate experiments were conducted under each substrate condition
Project description:Investigation of whole genome gene expression level changes in Lactococcus lactis KCTC 3769T,L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.
Project description:High throughput “omics technologies” such as transcriptomics and proteomics provide insights into the metabolic potential of an organism and have been used to understand the genetic and the central carbon metabolism mechanisms for the production of desired end products in various cellulolytic clostridia cultured on different substrates In this study, C. termitidis was cultured on lignocellulose derived simple and complex sugars: cellobiose, xylose, xylan and α–cellulose as sole carbon sources. 2D HPLC-MS/MS quantitative Proteomic profiles and RNA seq transcriptome profiles (next generation sequencing to identify and quantify RNA in biological samples) were analyzed to identify the genes involved in substrate degradation, cellodextrin transport and end product synthesis related genes Identification of these genes is important in understanding the metabolic networks of C. termitidis and could be valuable engineering targets for improving biomass to biofuel production.
Project description:Investigation of whole genome gene expression level changes in Lactococcus lactis KCTC 3769T,L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains. A one chip study using total RNA recovered from of L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . For the the transcriptome of of L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T was analyzed using the Lactococcus lactis KCTC 3769T microarray platform