Project description:With frequent fluctuations in global climate, plants often experience co-occurring dry-wet cycles and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed or drought recovered plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis plants were exposed to individual drought stress (soil drying at 40% FC, D), Pseudomonas syringae pv tomato DC3000 (PStDC3000), infection and their combination. Plants recovered from drought stress were also exposed to PStDC3000. Beside we have also infiltrated P. syringae pv tabaci (PSta, non-host pathogen) individually or in combination with drought stress. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of plants leaves under individual drought stress and pathogen infection was compared with their combination. Results implicate that plants exposed to combined drought and pathogen stress experience a new state of stress where each combination of stressor and their timing defines the plant responses and thus should be studied explicitly. Global transcriptional analysis in Arabidopsis leaves exposed to individual and combined drought and pathogen stress.
Project description:Cassava is a drought–resistant food crop in tropical and subtropical regions. Although cassava is a relatively drought-tolerant species, the development and yields are greatly affected by the adverse drought conditions. Information about molecular breeding will obtain by studying genetic regulatory mechanism. In this study, we demonstrate the drought-tolerant mechanisms in leaves of both cassava varieties(Xinxuan048 and KU50) by using RNA-Seq technique. 1,880 and 2,066 differentially expressed genes(DEGs) were induced by drought stress in leaves of KU50 and Xinxuan048, respectively. DEGs in the response to drought stress involve in many regulated pathways. ROS- and ABA-associated signaling pathways and photosynthesis-associated regulation are mainly elucidated. In addition, alternative splicing and ingle nucleotide polymorphism also involve in drought-stress responses in both cassava varieties, showing their important roles in response to drought stress in leaves. This study not only increases the understanding of physiological and molecular mechanisms to the drought response in cassava, but also lays a solid foundation on the breeding of drought-resistant varieties using molecular methods.
Project description:Genome-wide Transcriptional Analysis of Genes Associated with Drought Stress in Gossypium herbaceum root This experiment was designed to investigate the molecular mechanism associated with drought tolerance in root tissue of Gossypium herbaceum. The gene expression profiles of the root tissue using Affymetrix Cotton Genome Array were compared with drought tolerant and drought sensitive genotype of G.herbaceum under drought stress and watered condition. Many genes in various molecular function or biological processes were over- or under-represented between drought tolerant and sensitive genotype, suggesting various molecular mechanism and biochemical pathways are interlinked and tolerant genotype have developed multiple mechanisms as an adaptory behavior against drought stress.
Project description:Genome-wide Transcriptional Analysis of Genes Associated with Drought Stress in Gossypium herbaceum root This experiment was designed to investigate the molecular mechanism associated with drought tolerance in root tissue of Gossypium herbaceum. The gene expression profiles of the root tissue using Affymetrix Cotton Genome Array were compared with drought tolerant and drought sensitive genotype of G.herbaceum under drought stress and watered condition. Many genes in various molecular function or biological processes were over- or under-represented between drought tolerant and sensitive genotype, suggesting various molecular mechanism and biochemical pathways are interlinked and tolerant genotype have developed multiple mechanisms as an adaptory behavior against drought stress. The transcriptional responses of root tissue in drought tolerant and sensitive genotype of Gossypium herbaceum under drought stress have been investigated. Physiological responses to drought stress, such as stomatal conductance, water use efficiency, root bending assay on different mannitiol concentration were also measured as indicators of imposed drought stress. Total RNA was isolated from root tissue from both genotype under drought stress and normal irrigated condition with three biological replicates
Project description:this study discovered unique glycoprotein resources responsible for plant salt stress tolerance and suggested crucial roles of Nthis study discovered unique glycoprotein resources responsible for plant salt stress tolerance and suggested crucial roles of N-glycans in regulating salt responsive protein expression in Arabidopsis.-glycans in regulating salt responsive protein expression in Arabidopsis.