Project description:This is a genome-wide approach to identifying genes persistently induced in the mouse mammary gland by acute whole body low dose ionizing radiation (10cGy), 1 and 4 weeks after exposure. Gene expression that is modified under these parameters were compared between Tgfb1 wild type and heterozygote littermates in order to determine which genes induced or repressed by radiation were mediated via Tgfb1 status. Differential gene expression was analyzed in Tgfb1 heterozygote and wild type littermate 4th mammary glands, after whole body exposure to an acute dose of 10cGy ionizing radiation. Estrus cycle was normalized in all mice two days prior to irradiation by injection with an estrogen and progesterone mixture. It is widely believed that the carcinogenic action of ionizing radiation is due to targeted DNA damage and resulting mutations, but there is also substantial evidence that non-targeted radiation effects alter epithelial phenotype and the stromal microenvironment. Activation of transforming growth factor beta 1 (TGFbeta) is a non-targeted radiation effect that mediates cell fate decisions following DNA damage and regulates microenvironment composition; it could either suppress or promote cancer. Gene expression profiling shown herein demonstrates that low dose radiation (10 cGy) elicits persistent changes in Tgfb1 wild type and heterozygote murine mammary gland that are highly modulated by TGFbeta. We asked if such non-targeted radiation effects contribute to carcinogenesis by using a novel radiation chimera model. Unirradiated Trp53 null mammary epithelium was transplanted to the mammary stroma of mice previously exposed to a single low (10 -100 cGy) radiation dose. By 300 days, 100% of transplants in irradiated hosts at either 10 or 100 cGy had developed Trp53 null breast carcinomas compared to 54% in unirradiated hosts. Tumor growth rate was also increased by high, but not low, dose host irradiation. In contrast, irradiation of Tgfb1 heterozygote mice prior to transplantation failed to decrease tumor latency, or increase growth rate at any dose. Host irradiation significantly reduced the latency of invasive ductal carcinoma compared to spindle cell carcinoma, as well as those tumors negative for smooth muscle actin in wild type but not Tgfb1 heterozygote mice. However, irradiation of either host genotype significantly increased the frequency of estrogen receptor negative tumors. These data demonstrate two concepts critical to understanding radiation risks. First, non-targeted radiation effects can significantly promote the frequency and alter the features of epithelial cancer. Second, radiation-induced TGFbeta activity is a key mechanism of tumor promotion. Keywords: Differential gene expression after low dose irradiation Two genotypes: TGBbeta1 heterozygote and wildtype mouse mammary glands. Two time points post-10cGy-irradiation per genotype (1 week, 4 weeks); control time point was 1 week post-sham-irradiation. Two or three replicates per time point.
Project description:Thyroid gland is among the most sensitive organs to ionizing radiation. Whether low-dose radiation-induced papillary thyroid cancer (PTC) differs from sporadic PTC is yet unknown. We used microarrays to identify gene signature of radiation-induced papillary thyroid carcinomas
Project description:Ionizing radiation (IR) – induced salivary gland damage is a common adverse effect in radiotherapy for patients with head and neck cancers. Currently, there is no effective treatment for the resulting salivary gland hypofunction and xerostomia (dry mouth). Here we profiled the acute gene expression change in the mouse submandibular salivary gland, and defined its damage response patterns at the transcriptome level.
Project description:Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. For BALB/c mice, a total of 357, 480, and 335 lncRNAs and 550, 911, and 389 coding RNAs were identified at 2, 4, and 8 weeks post-irradiation, respectively, while for SPRET/EiJ, a total of 327 lncRNAs and 424 mRNAs were identified at 4 weeks post-irradiation.
Project description:Childhood exposure to carcinogens renders a higher risk of breast cancer. The molecular mechanisms underlying cancer development after such exposure are not, however, well understood. Here we examined how the mechanism of cancer development relates to the age at exposure to ionizing radiation (IR) or the carcinogen 1-methyl-1-nitrosourea (MNU). Pre- and postpubertal (3- and 7-week-old, respectively) female Sprague-Dawley rats were whole-body gamma-irradiated (2 Gy), injected intraperitoneally with MNU (20 mg/kg) or left untreated and were autopsied at 50 weeks of age. Mammary carcinomas were examined for estrogen receptor (ER) alpha, progesterone receptor (PR) and ErbB ligand expression and for expression microarrays. Early histological changes of the ovaries were also evaluated. The incidence of mammary cancer was higher after postpubertal, rather than prepubertal, IR exposure; the inverse was true for MNU. Most cancers were positive for both ER alpha and PR except for the prepubertal IR group. Interestingly, cancers of the prepubertal IR group expressed a different set of ErbB ligands from those of the other groups and did not overexpress Areg, which encodes an estrogen-regulated ErbB ligand, or other developmentally related genes including those for hormonally regulated mammary gland development. Prepubertal IR exposure resulted in ovarian dysfunction as revealed by a reduced follicular pool. Evidence thus suggests that mammary carcinogenesis induced by prepubertal IR exposure is independent of ovarian hormones but requires certain ErbB ligands; induction by postpubertal exposure depends on ovarian hormones and different ErbB ligands. In contrast, MNU-induced carcinogenesis was less influenced by the age at exposure.