Project description:Genomic profiling of human squamous cell carcinoma cell lines cells and corresponding primary tumors Descriptive experiment, studying DNA copy number alterations in 6 newly established human squamous cell carcinoma cell lines cells and corresponding 6 primary tumors.
Project description:The LC-MS/MS raw data (.mzxml) of nasal polyps and sinonasal squamous cell carcinoma patients.The study utilized 90 datasets from 30 individual nasal tissue samples across three independent experiments (Nasal polyps (NP): 48 datasets, SNSCC: 42 datasets).
Project description:NUT carcinoma (NC) is a highly aggressive subtype of squamous carcinoma driven by the BRD4-NUT fusion oncoprotein. Closely resembling human NC (hNC), GEMM tumors (mNC) are poorly differentiated squamous carcinomas that express high levels of MYC and metastasize to organs (liver, lung) and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes, characterized by RNAseq and CUT&RUN, show striking overlap with those of primary GEMM tumors. As in hNC, BRD4-NUT functions to block differentiation and maintain growth of mNC, as evidenced by BRD4-NUT knockdown and treatment of mNC cell lines with BET bromodomain inhibitors (BETi). Mechanistically, GEMM primary tumor and cell lines form very large H3K27ac-enriched super-enhancers that are unique to hNC, termed megadomains, that are invariably associated with key hNC-defining transcriptional oncogenic targets, Myc and Trp63.
Project description:We compared a large panel of human glioblastoma stem-like (GS) cell lines, corresponding primary tumors and conventional glioma cell lines to identify cell lines that preserve the transcriptome of human glioblastomas most closely, thereby allowing identification of shared therapeutic targets. We used Affymetrix HG-U133 Plus 2.0 microarrays to compare human glioblastoma stem-like (GS) cell lines, corresponding primary tumors and conventional glioma cell lines.
Project description:Persistent infection by high-risk human papillomaviruses (HPVs) is associated with the development of cervical cancer and a subset of anogenital and head and neck squamous cell carcinomas. Abnormal expression of cellular microRNAs (miRNAs) plays an important role in the development of cancer, including HPV-related tumors. MiRNA expression profile was investigated by microrray analysis in the HPV-positive cervical cancer cell lines SiHa (HPV16-positive cell line derived from a cervical squamous cell carcinoma), CaSki (HPV16-positive cell line derived from a metastatic cervical epidermoid carcinoma), and HeLa (HPV18-positive cell line derived from a cervical adenocarcinoma) and compared with primary HFKs and C33a (HPV-negative cervical cell line).
Project description:Lung cancer is the leading cause of preventable death globally and is broadly classified into adenocarcinoma and squamous cell carcinoma depending upon cell type. In this study, we carried out mass spectrometry based quantitative proteomic analysis of lung adenocarcinoma and squamous cell carcinoma primary tissue by employing the isobaric tags for relative and absolute quantitation (iTRAQ) approach. Proteomic data was analyzed using SEQUEST search algorithm which resulted in identification of 25,998 peptides corresponding to 4,342 proteins of which 610 proteins were differentially expressed (≥ 2-fold) between adenocarcinoma and squamous cell carcinoma samples. These differentially expressed proteins were further classified by gene ontology for their localizations and biological processes. Pathway analysis of differentially expressed proteins revealed distinct alterations in networks and pathways in both adenocarcinoma and squamous cell carcinoma samples. In this study, we identified a subset of proteins that shows converse expression between lung adenocarcinoma and squamous cell carcinoma samples. Such proteins may serve as signature markers to distinguish between the two subtypes.