Project description:Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulo gulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites.
Project description:Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.
Project description:Infection with Sarcocystis species is common in many species of animals, but it has not yet been reported in wolverines (Gulo gulo). Histological sections of tongues from 41 wolverines in the Kitikmeot Region, Nunavut, Canada, were examined for sarcocysts. Sarcocysts were found in 33 (80.4%) wolverines. Two structurally distinct types of sarcocysts were found. Type A sarcocysts were thin (<1 µm thick) walled. Ultrastructurally, the parasitophorous vacuolar membrane (Pvm) had minute undulations, but it lacked villar protrusions and was not invaginated into the granular layer. The bradyzoites were slender, about 5 × 1 µm in size. Structurally, these sarcocysts were distinct from known species of Sarcocystis and possessed a novel 18S and ITS-1 sequence, sharing 98% and 78% sequence similarity with Sarcocystis canis . A new species name, Sarcocystis kalvikus, is proposed for type A sarcocysts. In contrast, type B sarcocysts had relatively thicker (about 2 µm) cyst walls and larger bradyzoites, each about 10 × 2-3 µm. Ultrastructurally, the Pvm on the sarcocyst wall had villar protrusions that were either mushroom-like or sloping. Molecular analysis identified a unique 18S and ITS-1 sequence that placed them in a clade within the Sarcocystidae. Based on histology, TEM, and genetic data, the new name, Sarcocystis kitikmeotensis, is proposed. Sarcocystis kalvikus was found in 14 (34.1%), S. kitikmeotensis was found in 7 (17%), and both species were found in 12 (29.2%) of 41 wolverines.