Project description:Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulo gulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites.
Project description:Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.
Project description:Species of Trichinella are a globally distributed assemblage of nematodes, often with distinct host ranges, which include people, domestic, and wild animals. Trichinella spp. are important in northern Canada, where dietary habits of people and methods of meat preparation (drying, smoking, fermenting as well as raw) increase the risk posed by these foodborne zoonotic parasites. Outbreaks in the arctic and subarctic regions of Canada and the United States are generally attributed to T. nativa (T2) or the T6 genotype, when genetic characterization is performed. We report the discovery of Trichinella pseudospiralis (T4), a non-encapsulated species, in a wolverine (Gulo gulo) from the Northwest Territories of Canada. This parasite has been previously reported elsewhere from both mammals and carnivorous birds, but our findings represent new host and geographic records for T. pseudospiralis. Multiplex PCR and sequencing of fragments of Cytochrome Oxidase Subunit I (COI) and D3 rDNA confirmed the identification. Phylogenetically, Canadian isolates linked with each other and others derived from Palearctic or Neotropical regions, but not elsewhere in the Nearctic (continental USA). We suggest that migratory birds might have played a role in the dispersal of this pathogen 1000's of km to northwestern Canada. Wolverines are not typically consumed by humans, and thus should not pose a direct food safety risk for trichinellosis. However, the current finding suggests that they may serve as an indicator of a broader distribution for T. pseudospiralis. Along with infection risk already recognized for T. nativa and Trichinella T6, our observations emphasize the need for further studies using molecular diagnostics and alternative methods to clarify if this is a solitary case, or if T. pseudospiralis and other freeze susceptible species of Trichinella (such as T. spiralis) circulate more broadly in wildlife in Canada, and elsewhere.