Project description:Here we have compared adult wildtype (N2) C. elegans gene expression when grown on different bacterial environments/fod sources in an effort to model naturally occuring nematode-bacteria interactions at the Konza Prairie. We hypothesize that human-induced changes to natural environments, such as the addition of nitrogen fertalizer, have effects on the bacterial community in soils and this drives downstream changes in the structure on soil bacterial-feeding nematode community structure. Here we have used transcriptional profiling to identify candidate genes involved in the interaction of nematodes and bacteria in nature.
Project description:Commensal bacteria can manipulate the proliferation, differentiation, and survival of intestinal epithelial cells. Hindlimb unloading alters the composition and structure of the microbial community. To further characterize the epithelial changes, we performed a genome-wide microarray analysis of colon epithelium isolated from HU and control mice.
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions. 36 dsrAB clones for chip evaluation, 33 hybridizations of labeled dsrAB RNA from environmental peatsoil samples
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions.