Project description:MacroH2As core histone variants have a unique structure that includes C-terminal nonhistone domain. MacroH2As are highly conserved in vertebrates, and are thought to regulate gene expression. However the nature of genes regulated by macroH2As and the biological significance of macroH2As for the organism remain unclear. Our gene expression studies indicate that macroH2A.1 and macroH2A.2 work together to regulate specific genes. In these studies we examine the distributions of macroH2A.1 and macroH2A.2 nucleosomes to determine if they are localized to the genes that show altered expression in macroH2A knockout mouse liver. MacroH2A.1 and macroH2A.2 nucleosomes prepared from ~ 50 fetal mouse livers were purified by thio-affinity chromatography. Five samples were sequenced: Thiopropyl Sepharose, Normal Liver - contains mononucleosomal DNA from macroH2A.1-containing nucleosomes; Activate Thiol Sepharose, Normal Liver - contains mononucleosomal DNA primarily from macroH2A.2-containing nucleosomes. Starting Material, Normal Liver - this is a reference samplefor the first two samples. It contains mononucleosomal DNA from bulk fetal liver chromatin. Activated Thiol Sepharose, Knockout Livers - this is a control sample that contains mononucleosomal DNA from non-macroH2A nucleosomes that contaminate the macroH2A.2 nucleosomes. This fraction was prepared from macroH2A1/2 double knockout fetal livers; Starting Material, Knockout Liver - this is a reference sample for the fourth sample. It contains mononucleosomal DNA from bulk chromatin prepared from macroH2A1/2 double knockout fetal livers.
Project description:MacroH2As core histone variants have a unique structure that includes C-terminal nonhistone domain. MacroH2As are highly conserved in vertebrates, and are thought to regulate gene expression. However the nature of genes regulated by macroH2As and the biological significance of macroH2As for the organism remain unclear. Our gene expression studies indicate that macroH2A.1 and macroH2A.2 work together to regulate specific genes. In these studies we examine the distributions of macroH2A.1 and macroH2A.2 nucleosomes to determine if they are localized to the genes that show altered expression in macroH2A knockout mouse liver.
Project description:The histone variant macroH2A has been implicated in transcriptional repression, but the molecular mechanisms that contribute to global macroH2A-dependent genome regulation remain elusive. Using ChIP-seq coupled with transcriptional profiling in macroH2A knock-down cells (GSE53103) we demonstrate that singular macroH2A nucleosomes occupy transcription start sites of subsets of both expressed and repressed genes with opposing regulatory consequences. Specifically macroH2A nucleosomes mask repressor binding sites in expressed genes, but activator binding sites in repressed genes thus generating distinct chromatin landscapes limiting genetic or extracellular inductive signals. We show that composite nucleosomes containing macroH2A and NRF-1 are stably positioned on gene regulatory regions and can buffer the transcriptional noise typifying antiviral responses. In contrast, macroH2A nucleosomes without NRF-1 bind promoters weakly and mark genes with noisier gene expression patterns. Thus, the strategic position and stabilization of macroH2A nucleosomes in human promoters defines robust gene expression patterns.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:MacroH2As core histone variants have a unique structure that includes C-terminal nonhistone domain. MacroH2As are highly conserved in vertebrates, and are thought to regulate gene expression. However the nature of genes regulated by macroH2As and the biological significance of macroH2As for the organism remain unclear. Here we examine macroH2A function in vivo by knocking out both macroH2A1 and macroH2A2 in the mouse. We used microarrays to examine how the absence of macroH2A.1 and macroH2A.2 histone variants affect gene expression late fetal mouse liver.