Project description:The stress response of B. cereus ATCC 14579 is monitored true time, showing an enormous response in gene expression. Keywords: Stress response, comparative transcriptome analysis.
Project description:Transcriptomics by RNA-seq provides unparalleled insight into bacterial gene expression networks, enabling a deeper understanding of the regulation of pathogenicity, mechanisms of antimicrobial resistance, metabolism, and other cellular processes. Here we present the transcriptome architecture of Acinetobacter baumannii ATCC 17978, a species emerging as a leading cause of antimicrobial resistant nosocomial infections. Differential RNA-seq (dRNA-seq) examination of model strain ATCC 17978 in 16 laboratory conditions identified 3731 transcriptional start sites (TSS), and 110 small RNAs, including the first identification of 22 sRNA encoded at the 3′ end of mRNA.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.
Project description:S. aureus ATCC 25923 is performance standard for antimicrobial susceptibility testing. S. aureus ATCC 33591 showed resistance against erytrhromycin, penicillin, and streptomycin. We used microarray to compare RNA expression between sensitive and resistant strain of S. aureus as a preliminary research for MRSA inhibition.