Project description:The IL-33 receptor ST2 is differentially expressed by colonic lamina propria Treg cells Microarray of sort-purified Foxp3+ Treg cells from colonic lamina propria over mesenteric lymph node
Project description:Gene expression profile of dendritic cells (DC) of mesenteric lymph node (mLN) and lamina propria of small intestine (SI-LP) of control mice and mice lacking RelB expression in DCs at steady state, four days and 14 days after infection with Heligmosomoides polygyrus bakeri (Hpb) Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Tregs). Specific DC subsets or DC-intrinsic pathways regulate immunity against pathogens but also tolerance to harmless antigens derived from food or microbiota at barrier sites, but underlying mechanisms in the intestinal tract remain poorly defined. Here, we provide evidence that the alternative NF-B family member RelB controls a defined transcriptional program in migratory DC subsets of mesenteric lymph nodes and the small intestinal lamina propria. Functionally, ablation of RelB in dendritic cells result in increased Foxp3+ Treg cell numbers but decreased RORt peripheral Treg cell numbers maintained even under inflammatory conditions. Single-cell RNA-sequencing revealed a complete RelB dependency for the differentiation of cryptopatches and isolated lymphoid follicles-associated DCs (CIA-DCs) in the lamina propria of the small intestine. In addition, we show a RelB-dependent signature of migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction by affecting the expression of chemokines (Ccl22, Ccl17), migration behavior (Cd63), co-stimulatory molecule (Cd80, Cd40, Cd200, Tnfsf4), and tolerance-related integrin (Itgb5, Itgb8) expression. Functionally, increased Treg cell numbers in DC-specific RelB knockout animals did not show any risk of increased reactions in a model of food allergy but instead prevented protective Th2 immune responses in the intestines after infection with Heligmosomoides polygyrus bakeri despite their slight steady-state type 2 immune bias. This protection was dependent on elevated Treg cell frequencies during primary infection as a result of bystander immune tolerance. Thus, RelB expression in conventional DCs acts as a rheostat to establish a tolerogenic set point that is maintained even during infection and strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Project description:We showed different function of monocyte derived cells in the lamina propria of the colon under steady state and inflammatory conditions. We used microarrays to detail the global programme of gene expression and identified distinct clusters of regulated genes during this process. Different subsets of mononuclear phagocytes were sorted from the colonic lamina propria as well as the spleen. Sorting was done in C57BL/6 mice in steady state and under inflammatory conditions (Dextran Sodium Sulphate induced colitis model)
Project description:The colonic lamina propria contains a distinct population of Foxp3+ T regulatory cells (Tregs) that modulate responses to commensal microbes. Analysis of gene expression revealed that the transcriptome of colonic Tregs is distinct from splenic and other tissue Tregs. Rorγ and Helios in colonic Tregs mark distinct populations: Rorγ+Helios- or Rorγ-Helios+ Tregs. We uncovered an unanticipated role for Rorγ, a transcription factor generally considered to be antagonistic to Foxp3. Rorγ in colonic Tregs accounts for a small but specific part of the colon-specific Treg signature. (1) Total colonic and splenic Foxp3+ Treg comparison: Lymphocytes were isolated from colonic lamina propria and spleens of Foxp3-ires-GFP mice, where GFP reports Foxp3 expression. TCRb+CD4+GFP+ cells were double sorted into Trizol. (2) Colonic Rorγ+ and Rorγ- Treg comparison: Foxp3-ires-Thy1.1 reporter mice were crossed to Rorc-GFP reporter mice to generate mice that report both Foxp3 and Rorγ expression. Rorγ+Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP+) and Rorγ-Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP-) from colonic lamina propria were double sorted into Trizol.To reduce variability and increase cell number, cells from multiple mice were pooled for sorting and at least three replicates were generated for all groups. RNA from 1.5-3.0 x104 cells was amplified, labeled and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays.
Project description:GEX: Single-cell RNA sequencing of human steady-state immune cells from the lamina propria of colon and matching mesenteric lymph nodes
Project description:SS2_1: Single-cell RNA sequencing of human steady-state immune cells from the lamina propria of colon and matching mesenteric lymph nodes
Project description:VDJ: Single-cell RNA sequencing of human steady-state immune cells from the lamina propria of colon and matching mesenteric lymph nodes
Project description:SS2_2: Single-cell RNA sequencing of human steady-state immune cells from the lamina propria of colon and matching mesenteric lymph nodes
Project description:We showed different function of monocyte derived cells in the lamina propria of the colon under steady state and inflammatory conditions. We used microarrays to detail the global programme of gene expression and identified distinct clusters of regulated genes during this process.