Project description:Non-specific protective effects against reinfection have been described following infection with Candida albicans. Here we show that mice defective in functional T and B lymphocytes were protected against reinfection with C. albicans in a monocyte-dependent manner. C. albicans and beta glucans induced functional programming of monocytes, leading to enhanced cytokine production in vivo and in vitro. The training required the beta glucan receptor dectin 1 and the non-canonical Raf 1 pathway. Monocyte training by beta-glucans was mediated by epigenetic mechanisms through genome-wide changes in histone trimethylation at H3K4. Pathway analysis showed specific induction of epigenetic changes in genes of innate immunity. The functional programming of monocytes, reminiscent of similar properties of NK cells, has been termed M-bM-^@M-^\trained immunityM-bM-^@M-^] and may be employed for the design of improved vaccination strategies. Chromatin-IP at day7 followed by highthroughput sequencing to look at the differences in H3K4me3 and H3K27me3 binding in Monocytes either cultured in RPMI only versus those trained for 24hrs with beta glucan. Additionally expression analysis was performed by doing strandspecific RNAseq also for both unstimulated and beta glucan trained monocytes for correlating the histone modification changes with the expression changes. Biological replicates were generated from independent samples for H3K4me3 and RNAseq. Additional H3K4me3 ChIP-seq assays were performed for day0 untreated, 24hrs control and beta glucan trained monocytes. H3K4me3 ChIP-seq was also performed for Mouse macrophages both saline(control) and low dose Candida treated.
Project description:Non-specific protective effects against reinfection have been described following infection with Candida albicans. Here we show that mice defective in functional T and B lymphocytes were protected against reinfection with C. albicans in a monocyte-dependent manner. C. albicans and beta glucans induced functional programming of monocytes, leading to enhanced cytokine production in vivo and in vitro. The training required the beta glucan receptor dectin 1 and the non-canonical Raf 1 pathway. Monocyte training by beta-glucans was mediated by epigenetic mechanisms through genome-wide changes in histone trimethylation at H3K4. Pathway analysis showed specific induction of epigenetic changes in genes of innate immunity. The functional programming of monocytes, reminiscent of similar properties of NK cells, has been termed “trained immunity” and may be employed for the design of improved vaccination strategies.
Project description:Monocyte differentiation into macrophages represents one of the cornerstone processes in innate host defense. In addition, immunological imprinting of either tolerance or trained immunity after an initial infection determines the functional fate of innate immune cells and the susceptibility of the host to secondary infections. Here we comprehensively characterize the epigenetic profiles of these functional states relative to healthy adult naïve monocytes. Inflammatory and metabolic pathways are strongly modulated in the derived macrophages, including decreased activation of inflammasome components. The cAMP-dependent signaling pathway is remodeled and adrenergic signaling was functionally implicated in trained innate immunity induction in vivo. Interestingly, -Glucan trains innate immune cells through extensive remodeling of distal regulatory region-bound histone acetylation, resulting in a sizeable exclusive epigenomic signature. Accordingly, genome-wide transcription factor footprint analysis reveals a specific transcription factor repertoire at trained cell-specific enhancers when recouped with epigenetic data, forming a rich hypothesis generator to manipulate innate immunity.
Project description:Monocyte differentiation into macrophages represents one of the cornerstone processes in innate host defense. In addition, immunological imprinting of either tolerance or trained immunity after an initial infection determines the functional fate of innate immune cells and the susceptibility of the host to secondary infections. Here we comprehensively characterize the epigenetic profiles of these functional states relative to healthy adult naM-CM-/ve monocytes. Inflammatory and metabolic pathways are strongly modulated in the derived macrophages, including decreased activation of inflammasome components. The cAMP-dependent signaling pathway is remodeled and adrenergic signaling was functionally implicated in trained innate immunity induction in vivo. Interestingly, M-oM-^AM-"-Glucan trains innate immune cells through extensive remodeling of distal regulatory region-bound histone acetylation, resulting in a sizeable exclusive epigenomic signature. Accordingly, genome-wide transcription factor footprint analysis reveals a specific transcription factor repertoire at trained cell-specific enhancers when recouped with epigenetic data, forming a rich hypothesis generator to manipulate innate immunity. Monocytes were pre-incubated either with cell culture medium (RPMI), M-NM-2-glucan (5M-BM-5g/mL) or with LPS (100ng/mL), for 24 hours in a total volume of 10 mL. After a wash-out, cells were cultured in RPMI supplemented with 10% human pool serum. Monocytes were collected at different time points (0 h and 6 d after treatment) and counted before further treatment for chromatin immunoprecipitation, RNA or DNaseI treatment. Different donor Buffycoats (BC) were used as independent replicates. Replicates were generated for all the profiles including ChIPseq,RNAseq and DNaseIseq.
Project description:Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. Transcriptomes and epigenomes in four primary cell types: monocytes, in vitro differentiated naïve, tolerized and trained macrophages were characterized. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and pathways functionally implicated in trained immunity were identified. Strikingly, β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in DNase I hypersensitive sites at cell-type specific epigenetic loci unveiled differentiation and treatment specific repertoires. Altogether, this study provides a resource to understand the epigenetic changes that underlie innate immunity in humans.
Project description:Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. Transcriptomes and epigenomes in four primary cell types: monocytes, in vitro differentiated naïve, tolerized and trained macrophages were characterized. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and pathways functionally implicated in trained immunity were identified. Strikingly, β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in DNase I hypersensitive sites at cell-type specific epigenetic loci unveiled differentiation and treatment specific repertoires. Altogether, this study provides a resource to understand the epigenetic changes that underlie innate immunity in humans.
Project description:Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. Transcriptomes and epigenomes in four primary cell types: monocytes, in vitro differentiated naïve, tolerized and trained macrophages were characterized. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and pathways functionally implicated in trained immunity were identified. Strikingly, β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in DNase I hypersensitive sites at cell-type specific epigenetic loci unveiled differentiation and treatment specific repertoires. Altogether, this study provides a resource to understand the epigenetic changes that underlie innate immunity in humans.
Project description:Macrophages play a key role in both innate and adaptive immunity, but our knowledge on the changes in transcription regulation that occurs during their differentiation from monocytes is still limited. In this study, we used a meta-analysis followed by a systems biology approach for the identification of differentially expressed genes between monocytes and macrophages and possible regulators of these changes in transcription. Based on the pattern of gene expression change, transcription regulator analysis predicted a decrease in Enhancer of Zeste homolog 2 (EZH2), a histone 3 lysine 27 methyl transferase, activity after differentiation of monocytes into macrophages. This inhibition was validated by a significant decrease in trimethylated H3K27 during differentiation of both human primary monocytes into macrophages and the THP-1 cell line into macrophage-like cells. Overexpressing EZH2 during differentiation of monocytes and THP-1 cells obstructs cellular adhesion, thus preventing the first step in differentiation. Another facet of macrophage differentiation is the cessation of proliferation, and inhibition of EZH2 by the small molecule inhibitor GSK126 in THP-1 cells indeed impedes proliferation. This study shows an important part for epigenetic changes during monocyte differentiation. It highlights the role of EZH2 activity behind the changes needed in adhesion and proliferation mechanisms for macrophage formation. Monocytes isolated from human peripherial mononuclear cells were differentiated in monocyte derived macrophages by M-CSF stimulation
Project description:Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. Transcriptomes (RNA-Seq) and epigenomes (ChIP-Seq H3K4me1,H3K4me3,H3K27ac) in four primary cell types: monocytes, in vitro differentiated naive, tolerized and trained macrophages were characterized. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and pathways functionally implicated in trained immunity were identified. Strikingly, B-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in DNase I hypersensitive sites at cell-type specific epigenetic loci unveiled differentiation and treatment specific repertoires. Altogether, this study provides a resource to understand the epigenetic changes that underlie innate immunity in humans.