Project description:Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a notorious foodborne pathogen capable of causing severe gastrointestinal infections in humans. The bovine rectoanal junction (RAJ) has been identified as a primary reservoir of STEC O157:H7, playing a critical role in its transmission to humans through contaminated food sources. Despite the relevance of this host-pathogen interaction, the molecular mechanisms behind the adaptation of STEC O157:H7 in the bovine RAJ and its subsequent infection of human colonic epithelial cells remain largely unexplored. This study aimed to unravel the intricate dynamics of STEC O157:H7 in two distinct host environments: bovine RAJ squamous epithelial (RSE) cells and human colonic epithelial cells. Comparative transcriptomics analysis was employed to investigate the differential gene expression profiles of STEC O157:H7 during its interaction with these cell types. The bacterial cells were cultured under controlled conditions to simulate the microenvironments of both bovine RAJ and human colonic epithelial cells. Using high-throughput RNA sequencing, we identified key bacterial genes and regulatory pathways that are significantly modulated in response to each specific host environment. Our findings reveal distinct expression patterns of virulence factors, adhesion proteins, and stress response genes in STEC O157:H7 grown in bovine RAJ cells as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlights the potential role of certain genes in host adaptation and tissue-specific pathogenicity. Furthermore, this study sheds light on the potential factors contributing to the survival and persistence of STEC O157:H7 in the bovine reservoir and its ability to colonize and cause disease in humans.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Leafy green vegetables, such as lettuce, have been increasingly implicated in outbreaks of foodborne illnesses due to contamination by Escherichia coli O157:H7. While E. coli can survive in soils, colonize plants, and survive on produce, very little is known about the interaction of E. coli with the roots of growing lettuce plants. In these studies a combination of microarray analyses and microbial genetics were used to gain a comprehensive understanding of bacterial genes involved in the colonization and growth of E. coli K12 on lettuce roots using a hydroponic assay system. Here we report that after three days of interaction with lettuce roots, 193 and 131 genes were significantly up-regulated and down-regulated at least 1.5 fold, respectively. Forty-five out of the 193 up-regulated genes (23%) were involved in protein synthesis and were highly induced. Genes involved in stress response, attachment and biofilm formation were up-regulated in E. coli when they interacted with lettuce roots under conditions of hydroponic growth. In particular crl, a gene regulating the cryptic csgA gene for curli production, was significantly up regulated. The crl, csgA and fliN mutants had a reduced capacity to attach to roots as determined by bacterial counts and by confocal laser scanning microscopy. Our microarray data showed that E. coli K12 increased the synthesis of proteins indicated that a dramatic change was induced in the physiology of the microorganism. This study indicates that E. coli K12 can efficiently colonize lettuce roots by using attachment and biofilm modulation genes and can readily adapt to the rhizosphere of lettuce plants. Further studies are needed to better characterize this interaction in pathogenic strains of this species. Escherichia coli MG1655 strains were grown in the lettuce rhizosphere for three days. Transcriptional profiling of E. coli was compared between cells grown with and without rhizosphere . Three biological replicates of each treatment were prepared, and six microarray slides were used.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Mastitis is a common disease in dairy cows and brings massive losses to the dairy industry. m6A is a type of modification strongly associated with many diseases. However, the role of m6A in mastitis caused by Staphylococcus aureus and Escherichia coli has not been investigated.We used MeRIP-seq technology to sequence the bovine mammary epithelial cells (MAC-T) infected with inactivated S. aureus/E. coli for 24 h.