Project description:The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes could accumulate over macroevolutionary time has been considered, but not yet seldom been tested empirically. The current study was designed to compare epigenetic changes among several closely related species of Darwin’s finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome wide alterations in genetic mutations using copy number variation (CNV) were compared to epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggests that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin’s finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein (BMP), toll receptor, and melanogenesis signaling pathways. Species- specific epimutations were significantly over-represented in these pathways. Since environmental factors are known to rapidly alter heritable changes in the epigenome, it is possible that epigenetic changes have played a contributing role in the molecular basis of the evolution of Darwin's finches.
Project description:The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin's finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin's finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these pathways. As environmental factors are known to result in heritable changes in the epigenome, it is possible that epigenetic changes contribute to the molecular basis of the evolution of Darwin's finches.
Project description:The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in evolutionary change. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions. In the current study we explored variation between populations of Darwin’s finches living in adjacent “urban” and “rural” environments on Santa Cruz Island in the Galápagos. We tested for morphological, genetic, and epigenetic differences between the urban and rural populations of each of two species of ground finches, Geospiza fortis and G. fuliginosa. Using data collected from more than 1000 birds, we found significant morphological differences between populations of G. fortis, but not G. fuliginosa. We did not find genetic differences between populations of either species, based on comparisons of copy number variation (CNV). In contrast, we did find epigenetic differences between the urban and rural populations of both species, based on DNA methylation analysis. We explored genomic features and gene associations of the differentially methylated regions (DMR), as well as their possible functional significance. In summary, our study documents local population epigenetic variation within species of Darwin’s finches.
Project description:Regenerating feathers of the Gouldian finches were collected from heads of moulting individuals from an Australian captive population. Affymetrix microarrays were used to examine gene expression differences between black and red morphs.
Project description:Innate immunity is expected to play a primary role in conferring resistance to novel infectious diseases, but few studies have attempted to examine its role in the evolution of resistance to emerging pathogens in wild vertebrate populations. Here we used experimental infections and cDNA microarrays to examine whether changes in the innate and/or acquired immune responses likely accompanied the emergence of resistance in house finches (Carpodacus mexicanus) in the eastern United States subject to a recent outbreak of conjunctivitis-causing bacterium (Mycoplasma gallisepticum- MG). Three days following experimental infection with MG, we observed differences in the splenic transcriptional responses between House Finches from eastern U.S. populations, with a 12-year history of MG exposure, versus western U.S. populations, with no history of exposure to MG. In particular, western birds down-regulated gene expression, while eastern finches showed no expression change relative to controls. Studies involving poultry have shown that MG can manipulate host immunity, and our observations suggest that pathogen manipulation occurred only in finches from the western populations, outside the range of MG. Fourteen days after infection, eastern finches, but not western finches, up-regulated genes associated with acquired immunity (cell-mediated immunity) relative to controls. These observations suggest population differences in the temporal course of the response to infection with MG, and imply that innate immune processes were targets of selection in response to MG in the eastern U.S. population.
Project description:Analysis of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells. Results indicate regulatory T cell (Treg) ontogenesis requires two independent processes, expression of the transcription factor Foxp3 and establishment of Treg epigenetic programs induced by T cell receptor (TCR) stimulation.
Project description:Analysis of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells. Results indicate regulatory T cell (Treg) ontogenesis requires two independent processes, expression of the transcription factor Foxp3 and establishment of Treg epigenetic programs induced by T cell receptor (TCR) stimulation. GFP+CD4+ and GFP-CD4+ splenocytes were sorted from DEREG and DEREG/Scurfy mice. These cells were activated with anti-CD3/CD28 antibodies, and then transduced with Foxp3-expressing retrovirus (pGCSamIN, NGFR marker). NGFR+ T cells sorted were subjected to microarray analysis (Affymetrix, mouse genome 430 2.0 array). To normalize the experimental conditions, Tregs (GFP+ T cells from DEREG) and Tconv (GFP- T cells from DEREG) were also activated and transduced with empty vector. Two replicates each.